在菱形ABCD中,E、F分別在CD、BC上,且CE=CF,求證:△ADE≌△ABF.

證明:由菱形ABCD,得到AD=AB,∠B=∠D,CD=BC,
又∵CE=CF,∴DE=BF,
∴△ADE≌△ABF.
分析:由ABCD為菱形,根據(jù)菱形的性質(zhì)得到四條邊相等,且對(duì)角相等,由CE=CF,根據(jù)線段的加減得到DE=BF,從而利用“ASA”即可證出兩三角形全等.
點(diǎn)評(píng):此題考查學(xué)生掌握菱形的性質(zhì):菱形的四條邊都相等;菱形的對(duì)角相等;菱形的對(duì)角線互相垂直且互相平分.同時(shí)要求掌握全等的判定方法:SSS、SAS、ASA、AAS、HL.
注意:AAA、SSA不能判定兩個(gè)三角形全等,判定兩個(gè)三角形全等時(shí),必須有邊的參與,若有兩邊一角對(duì)應(yīng)相等時(shí),角必須是兩邊的夾角.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在菱形ABCD中,對(duì)角線AC、BD交于O點(diǎn),AC=12cm,BD=9cm,則菱形ABCD的面積是
 
cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

14、如圖,在菱形ABCD中,∠BAD=80°,AB的垂直平分線交對(duì)角線AC于點(diǎn)F,E為垂足,連接DF,則∠CDF的度數(shù)=
60
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在菱形ABCD中,AE⊥BC于E,已知EC=1,cosB=
513
,則這個(gè)菱形的面積是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,在菱形ABCD中,AC,BD交于點(diǎn)O,AB=15,AO=12,P從A出發(fā),Q從O出發(fā),分別以2cm/s和1cm/s的速度各自向O,B點(diǎn)運(yùn)動(dòng),當(dāng)運(yùn)動(dòng)時(shí)間為多少秒時(shí),四邊形BQPA的面積是△POQ面積的8倍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在菱形ABCD中,P為對(duì)角線BD上一點(diǎn),連接AP,若AP=BP,AD=PD,則∠PAC的度數(shù)是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案