【題目】在△ABC中,∠ACB=90°,AC=BC,直線MN經(jīng)過點C,且AD⊥MN,BE⊥MN,垂足分別為點D,E.求證:DE=AD+BE.
【答案】見解析
【解析】
根據(jù)垂直定義求出∠BEC=∠ACB=∠ADC,根據(jù)等式性質(zhì)求出∠ACD=∠CBE,根據(jù)AAS證出△ADC和△CEB全等,可推出CD=BE,AD=CE,進(jìn)而可證明DE=AD+BE.
證明:如圖,∵∠ACB=90°,AD⊥MN,BE⊥MN,
∴∠BEC=∠ACB=∠ADC=90°,
∴∠ACD +∠BCE=90°,∠BCE+∠CBE=90°,
∴∠ACD=∠CBE,
在△ADC和△CEB中,
∠ADC=∠BEC,∠ACD=∠CBE,AC=BC,
∴△ADC≌△CEB(AAS);
∴BE=CD,AD=CE,
∵CD+CE=DE,
∴DE=AD+BE.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,點D,E分別是邊BC,AB上的中點,連接DE并延長至點F,使EF=2DF,連接CE、AF.
(1)證明:AF=CE;
(2)當(dāng)∠B=30°時,試判斷四邊形ACEF的形狀并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知 CD 是經(jīng)過∠BCA 頂點 C 的一條直線,CA=CB.E、F 分別是直線 CD 上兩點(不 重合),且∠BEC=∠CFA=∠a
(1)若直線 CD 經(jīng)過∠BCA 的內(nèi)部,且 E、F 在射線 CD 上,請解決下面問題:
①若∠BCA=90°,∠a=90°,請在圖 1 中補全圖形,并證明:BE=CF,EF=;
②如圖 2,若 0°<∠BCA<180°,請?zhí)砑右粋關(guān)于∠a 與∠BCA 關(guān)系的條件 , 使①中的兩個結(jié)論仍然成立;
(2)如圖 3,若直線 CD 經(jīng)過∠BCA 的外部,∠a=∠BCA,請寫出 EF、BE、AF 三條線 段數(shù)量關(guān)系(不要求證明).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC在直角坐標(biāo)系中,
(1)請寫出△ABC各點的坐標(biāo).
(2)求出△ABC的面積.
(3)若把△ABC向上平移2個單位,再向右平移2個單位得△A′B′C′,在圖中畫出△ABC變化位置。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點O是△ABC內(nèi)一點,連結(jié)OB、OC,并將AB、OB、OC、AC的中點D、E、F、G依次連結(jié),得到四邊形DEFG.
(1)求證:四邊形DEFG是平行四邊形;
(2)如果∠OBC=45°,∠OCB=30°,OC=4,求EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,相鄰兩條平行直線間的距離相等,若等腰直角三角形ABC的直角頂點C在上,另兩個頂點A、B分別在、上,則的值是_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,港口A在觀測站O的正東方向,OA=4km,某船從港口A出發(fā),沿北偏東15°方向航行一段距離后到達(dá)B處,此時從觀測站O處測得該船位于北偏東60°的方向,求該船航行的距離(即AB的長).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把拋物線y=x2平移得到拋物線m,拋物線m經(jīng)過點A(﹣6,0)和原點O(0,0),它的頂點為P,它的對稱軸與拋物線y=x2交于點Q,則圖中陰影部分的面積為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】要設(shè)計一幅寬20cm,長30cm的矩形圖案,其中有兩橫兩豎的彩條,橫、豎彩條的寬度比為2∶3,如果要使所有彩條所占面積為原矩形圖案面積的三分之一,應(yīng)如何設(shè)計每個彩條的寬度?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com