精英家教網 > 初中數學 > 題目詳情

【題目】如圖,點O是等邊△ABC內一點,∠AOB=110°,∠BOC=α,將△BOC繞點C按順時針方向旋轉60°得△ADC,連接OD.
(1)求證:△COD是等邊三角形;
(2)當α=150°時,試判斷△AOD的形狀,并說明理由.

【答案】
(1)證明:∵將△BOC繞點C按順時針方向旋轉60°得△ADC,

∴∠OCD=60°,CO=CD,

∴△OCD是等邊三角形


(2)解:△AOD為直角三角形.

理由:∵△COD是等邊三角形.

∴∠ODC=60°,

∵將△BOC繞點C按順時針方向旋轉60°得△ADC,

∴∠ADC=∠BOC=α,

∴∠ADC=∠BOC=150°,

∴∠ADO=∠ADC﹣∠CDO=150°﹣60°=90°,于是△AOD是直角三角形.


【解析】(1)由旋轉的性質可知CO=CD,∠OCD=60°,可判斷:△COD是等邊三角形;(2)由(1)可知∠COD=60°,當α=150°時,∠ADO=∠ADC﹣∠CDO,可判斷△AOD為直角三角形.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】在出行中,主動采用能降低二氧化碳排放量的交通方式,謂之“低碳出行”.明明一家積極響應政府“綠色山城,低碳出行”的號召,今年2月﹣5月明明一家減少了駕車出行,他們將2月﹣5月駕車行駛的里程統(tǒng)計后繪制成以下兩幅不完整的統(tǒng)計圖:

(1)扇形統(tǒng)計圖中x= , 并補全折線統(tǒng)計圖;
(2)某中學也積極參與“綠色山城,低碳出行”活動中,決定從4名廣播社骨干成員中(其中兩名男生,兩名女生)選拔兩名同學去演講宣傳,請用畫樹形圖或列表的方法求所選出的兩名同學恰好是一名男生一名女生的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】問題探究:如圖①,四邊形 ABCD是正方形,BE⊥BF,BE=BF,求證:△ABE≌△CBF;
方法拓展:如圖②,ABCD是矩形,BC=2AB,BF⊥BE,BF=2BE,若矩形ABCD的面積為40,△ABE的面積為4,求陰影部分圖形的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】閱讀材料并解答下列問題.

你知道嗎?一些代數恒等式可以用平面圖形的面積來表示,例如(2ab)(ab)2a23abb2就可以用圖甲中的①或②的面積表示.

(1)請寫出圖乙所表示的代數恒等式;

(2)畫出一個幾何圖形,使它的面積能表示(ab)(a3b)a24ab3b2;

(3)請仿照上述式子另寫一個含有a,b的代數恒等式,并畫出與之對應的幾何圖形.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】數學活動﹣旋轉變換
(1)如圖①,在△ABC中,∠ABC=130°,將△ABC繞點C逆時針旋轉50°,得到△A′B′C,連接BB′,求∠A′B′B的大小;
(2)如圖②,在△ABC中,∠ABC=150°,AB=3,BC=5,將△ABC繞點C逆時針旋轉60°得到△A′B′C,連接BB′,以A′為圓心,A′B′長為半徑作圓. (Ⅰ)猜想:直線BB′與⊙A′的位置關系,并證明你的結論;
(Ⅱ)連接A′B,求線段A′B的長度.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,Rt△ABC的三個頂點分別是A(﹣3,2),B(0,4),C(0,2).

(1)將△ABC以點C為旋轉中心旋轉180°,畫出旋轉后對應的△A1B1C;平移△ABC,若點A的對應點A2的坐標為(0,﹣4),畫出平移后對應的△A2B2C2;
(2)若將△A1B1C繞某一點旋轉可以得到△A2B2C2;請直接寫出旋轉中心的坐標;
(3)在x軸上有一點P,使得PA+PB的值最小,請直接寫出點P的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,將△ABO繞點A順時針旋轉到△AB1C1的位置,點B、O分別落在點B1、C1處,點B1在x軸上,再將△AB1C1繞點B1順時針旋轉到△A1B1C2的位置,點C2在x軸上,將△A1B1C2繞點C2順時針旋轉到△A2B2C2的位置,點A2在x軸上,依次進行下去….若點A(3,0),B(0,4),則點B100的坐標為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知五邊形ABCDE 是⊙O 的內接正五邊形,且⊙O 的半徑為1.則圖中陰影部分的面積是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知關于的一元二次方程

(Ⅰ)求證:方程有兩個不相等的實數根;

(Ⅱ)若此方程的一個根是1,請求出方程的另一個根;

()求以()中所得兩根為邊長的等腰三角形的周長.

查看答案和解析>>

同步練習冊答案