如圖,⊙O的半徑為6cm,直線AB是⊙O的切線,切點為點B,弦BC∥AO,若∠A=30°,則劣弧的長為        cm.

 

【答案】

【解析】根據(jù)切線的性質(zhì)可得出OB⊥AB,從而求出∠BOA的度數(shù),利用弦BC∥AO,及OB=OC可得出∠BOC的度數(shù),代入弧長公式即可得出答案:

∵直線AB是⊙O的切線,∴OB⊥AB(切線的性質(zhì))。

又∵∠A=30°,∴∠BOA=60°(直角三角形兩銳角互余)。

∵弦BC∥AO,∴∠CBO=∠BOA=60°(兩直線平行,內(nèi)錯角相等)。

又∵OB=OC,∴△OBC是等邊三角形(等邊三角形的判定)。

∴∠BOC=60°(等邊三角形的每個內(nèi)角等于60°)。

又∵⊙O的半徑為6cm,∴劣弧的長=(cm)!

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,⊙O的半徑為5,AB=5
3
,C是圓上一點,則∠ACB=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,⊙O的半徑為3,直徑AB⊥弦CD,垂足為E,點F是BC的中點,那么EF2+OF2=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,⊙O的半徑為
5
,圓心與坐標(biāo)原點重合,在直角坐標(biāo)系中,把橫坐標(biāo)、縱坐標(biāo)都是整數(shù)的點稱為格點,則⊙O上格點有
 
個,設(shè)L為經(jīng)過⊙O上任意兩個格點的直線,則直線L同時經(jīng)過第一、二、四象限的概率是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,⊙O的半徑為13cm,弦AB∥CD,兩弦位于圓心O的兩側(cè),AB=24cm,CD=10cm,求AB和CD的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,⊙O的半徑為5,P是弦MN上的一點,且MP:PN=1:2.若PA=2,則MN的長為
6
2
6
2

查看答案和解析>>

同步練習(xí)冊答案