【題目】為了了解某學(xué)校初四年級學(xué)生每周平均課外閱讀時間的情況,隨機抽查了該學(xué)校初四年級m名同學(xué),對其每周平均課外閱讀時間進行統(tǒng)計,繪制了如下條形統(tǒng)計圖(圖一)和扇形統(tǒng)計圖(圖二):

(1)根據(jù)以上信息回答下列問題:
①求m值.
②求扇形統(tǒng)計圖中閱讀時間為5小時的扇形圓心角的度數(shù).
③補全條形統(tǒng)計圖.
(2)直接寫出這組數(shù)據(jù)的眾數(shù)、中位數(shù),求出這組數(shù)據(jù)的平均數(shù).

【答案】
(1)

解:①∵課外閱讀時間為2小時的所在扇形的圓心角的度數(shù)為90°,

∴其所占的百分比為 = ,

∵課外閱讀時間為2小時的有15人,

∴m=15÷ =60;

②依題意得: ×360°=30°;

③第三小組的頻數(shù)為:60﹣10﹣15﹣10﹣5=20,

補全條形統(tǒng)計圖為:


(2)

解:∵課外閱讀時間為3小時的20人,最多,

∴眾數(shù)為 3小時;

∵共60人,中位數(shù)應(yīng)該是第30和第31人的平均數(shù),且第30和第31人閱讀時間均為3小時,

∴中位數(shù)為3小時;

平均數(shù)為: =2.75小時


【解析】(1)①根據(jù)2小時所占扇形的圓心角的度數(shù)確定其所占的百分比,然后根據(jù)條形統(tǒng)計圖中2小時的人數(shù)求得m的值;②結(jié)合周角是360度進行計算;③求得總?cè)藬?shù)后減去其他小組的人數(shù)即可求得第三小組的人數(shù);(2)利用眾數(shù)、中位數(shù)的定義及平均數(shù)的計算公式確定即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】不等式組 的解集在數(shù)軸上可表示為(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在梯形ABCD中,AD∥BC,∠ABC=90°,AB=4,AD=8,sin∠BCD= ,CE平分∠BCD,交邊AD于點E,聯(lián)結(jié)BE并延長,交CD的延長線于點P.
(1)求梯形ABCD的周長;
(2)求PE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線y=﹣x2+bx+c經(jīng)過點A(3,0)和點B(2,3),過點A的直線與y軸的負(fù)半軸相交于點C,且tan∠CAO=
(1)求這條拋物線的表達式及對稱軸;
(2)聯(lián)結(jié)AB、BC,求∠ABC的正切值;
(3)若點D在x軸下方的對稱軸上,當(dāng)SDBC=SADC時,求點D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AD∥BC,AB⊥BC,AB=3,點E為射線BC上一個動點,連接AE,將△ABE沿AE折疊,點B落在點B′處,過點B′作AD的垂線,分別交AD,BC于點M,N.當(dāng)點B′為線段MN的三等分點時,BE的長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將長方形ABCD沿著對角線BD折疊,使點C落在處,AD于點E

(1)試判斷△BDE的形狀,并說明理由;

(2)若,,求△BDE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】不等式組 的解集在數(shù)軸上表示為( ).
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,BE平分∠ABCAC邊于點E,

(1)如圖1,過點EDEBCAB于點D,求證:BDE為等腰三角形;

(2)如圖2,延長BED,ADB =ABC, AFBDF,AD=2,BF=3,DF的長

(3)如圖3,AB=AC,AFBD,ACD=ABC,判斷BF、CD、DF的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),已知四邊形ABCD的四條邊相等,四個內(nèi)角都等于90°,點E是CD邊上一點,F(xiàn)是BC邊上一點,且∠EAF=45°.

(1)求證:BF+DE=EF;

(2)若AB=6,設(shè)BF=x,DE=y,求y關(guān)于x的函數(shù)解析式,并寫出x的取值范圍;

(3)過點A作AHFE于點H,如圖(2),當(dāng)FH=2,EH=1時,求AFE的面積.

 

查看答案和解析>>

同步練習(xí)冊答案