【題目】如圖,△ABC中,AB=AC,AD、AE分別是∠BAC與∠BAC的外角的平分線,BE⊥AE.求證:AB=DE
【答案】證明見解析.
【解析】試題分析:先由角平分線和等腰三角形的性質(zhì)證明AE∥BD,再由AD、AE分別是∠BAC與∠BAC的外角的平分線可證得DA⊥AE,可得AD∥BE,可證得四邊形ADBE為矩形,可得結(jié)論.
試題解析:證明:∵AD、AE分別是∠BAC與∠BAC的外角的平分線,∴∠BAD+∠EAB=(∠BAC+∠FAB)=90°,∵BE⊥AE,∴DA∥BE,∵AB=AC,∴∠ABC=∠ACB,∵∠FAB=∠ABC+∠ACB=2∠ABC,且∠FAB=2∠EAB,∴∠ABC=∠EAB,∴AE∥BD,∴四邊形AEBD為平行四邊形,且∠BEA=90°,∴四邊形AEBD為矩形,∴AB=DE.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在同一平面內(nèi),不重合的兩條直線的位置關(guān)系有( )
A. 平行和相交 B. 平行和垂直 C. 平行、垂直和相交 D. 垂直和相交
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列運(yùn)算正確的是( 。
A. (﹣a+b)(a﹣b)×a2﹣b2=a2﹣b2 B. a3+a4=a7 C. a3a2=a5 D. 23=6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】矩形的一個(gè)內(nèi)角平分線把矩形的一條邊分成3cm和5cm兩部分,則矩形的周長( )
A.16cm B.22cm和16cm C.26cm D.22cm和26cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,二次函數(shù)y=x2+2x﹣3的圖象如圖所示,點(diǎn)A(x1,y1),B(x2,y2)是該二次函數(shù)圖象上的兩點(diǎn),其中﹣3≤x1<x2≤0,則下列結(jié)論正確的是( 。
A. y1<y2B.y1>y2C.y的最小值是﹣3 D.y的最小值是﹣4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角梯形ABCD中,AD∥BC,∠C=90°,BC=16,DC=12,AD=21.動(dòng)點(diǎn)P從點(diǎn)D出發(fā),沿射線DA的方向以每秒2個(gè)單位長的速度運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),在線段CB上以每秒1個(gè)單位長的速度向點(diǎn)B運(yùn)動(dòng),點(diǎn)P,Q分別從點(diǎn)D,C同時(shí)出發(fā),當(dāng)點(diǎn)Q運(yùn)動(dòng)到點(diǎn)B時(shí),點(diǎn)P隨之停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)的時(shí)間為t(秒).
(1)設(shè)△BPQ的面積為S,求S與t之間的函數(shù)關(guān)系式;
(2)當(dāng)t為何值時(shí),以B、P、Q三點(diǎn)為頂?shù)椎娜切问堑妊切危?/span>
(3)當(dāng)線段PQ與線段AB相交于點(diǎn)O,且2AO=OB時(shí),求∠BQP的正切值;
(4)是否存在時(shí)刻t,使得PQ⊥BD?若存在,求出t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】利用公式法解下列方程
(1)x=4x2+2 (2)-x 2+5x-4=0
(3)7x2 -28x +7= 0 (4)(x+1)(x+8)=-12
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是()
A. “明天降雨的概率為50%”,意味著明天一定有半天都在降雨
B. 了解全國快遞包裹產(chǎn)生的包裝垃圾數(shù)量適合采用全面調(diào)查(普查)方式
C. 擲一枚質(zhì)地均勻的骰子,骰子停止轉(zhuǎn)動(dòng)后,6點(diǎn)朝上是必然事件
D. —組數(shù)據(jù)的方差越大,則這組數(shù)據(jù)的波動(dòng)也越大
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com