【題目】如圖,曲線l是由函數(shù)y在第一象限內(nèi)的圖象繞坐標原點O逆時針旋轉(zhuǎn)90°得到的,且過點A m,6),B (﹣6n),則OAB的面積為_____

【答案】16

【解析】

AM⊥y軸于M,BN⊥x軸于N,直線AMBN交于點P,根據(jù)旋轉(zhuǎn)的性質(zhì)得出點A(m,6),B(-6,n)在函數(shù)y=-的圖象上,根據(jù)待定系數(shù)法求得m、n的值,繼而得出P(6,6),然后根據(jù)SAOB=S矩形OMPN-SOAM-SOBN-SPAB即可求得結(jié)果.

解:

AM⊥y軸于M,BN⊥x軸于N,直線AMBN交于點P,
∵曲線l是由函數(shù)y=

在第一象限內(nèi)的圖象繞坐標原點O逆時針旋轉(zhuǎn)90°得到的,且過點A(m,6),B(-6,n),
∴點A(m,6),B(-6,n)在函數(shù)y=-的圖象上,
∴6m=-12,-6n=-12,
解得m=-2,n=2,
∴A(-2,6),B(-6,2),
∴P(-6,6),
∴SAOB=S矩形OMPN-SOAM-SOBN-SPAB=6×6- ×2×6-×6×2-×4×4=16,
故答案為16.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校組織了“英語手抄報”征集活動,現(xiàn)從中隨機抽取部分作品,按A、B、CD四個等級進行評價,并根據(jù)統(tǒng)計結(jié)果繪制了如下兩幅不完整的統(tǒng)計圖.

1)求抽取了多少份作品;

2)此次抽取的作品中等級為B的作品有______份,并補全條形統(tǒng)計圖;

3)若該校共征集到600份作品,請估計等級為A的作品約有多少份?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在四邊形ABCD中,ADBC,∠A=90°,AB=AD=8cmCD=10cm,點P從點B出發(fā),沿BA方向勻速運動,速度為1cm/s;同時,點Q從點D出發(fā),沿DC方向勻速運動,速度為lcm/s.連接PQ,設(shè)運動時間為ts)(0t8).解答下列問題:

1)當t為何值時,PQAD?

2)設(shè)四邊形APQD的面積為ycm2),求yt的函數(shù)關(guān)系式;

3)是否存在某一時刻t,使S四邊形APQOS四邊形BCQP=1727?若存在,求出t的值,并求此時PQ的長;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果點P(2x+6,x-4)在平面直角坐標系的第四象限內(nèi),那么x的取值范圍在數(shù)軸上可表示為

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在ABC中,AB=AC,D為邊BC上一點,以AB,BD為鄰邊作平行四邊形ABDE,連接AD,EC.

(1)求證:AD=CE;

(2)當點D在什么位置時,四邊形ADCE是矩形,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著新農(nóng)村的建設(shè)和舊城的改造,我們的家園越來越美麗,小明家附近廣場中央新修了一個圓形噴水池,在水池中心豎直安裝了一根高米的噴水管,它噴出的拋物線形水柱在與池中心的水平距離為米處達到最高,水柱落地處離池中心米.

(1)請你建立適當?shù)闹苯亲鴺讼,并求出水柱拋物線的函數(shù)解析式;

(2)求出水柱的最大高度是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,邊長為2的正方形的頂點軸正半軸上,反比例函數(shù)的圖像在第一象限的圖像經(jīng)過點,交.

(1)當點的坐標為時,求的值;

(2)若點的中點,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點是直線與反比例函數(shù)為常數(shù))的圖象的交點.過點軸的垂線,垂足為,且

1)求點的坐標及的值;

2)已知點,過點作平行于軸的直線,交直線于點,交反比例函數(shù)為常數(shù))的圖象于點,交垂線于點.若,結(jié)合函數(shù)的圖象,直接寫出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校計劃在“陽光體育”活動課程中開設(shè)乒乓球、羽毛球、籃球、足球四個體育活動項目.為了了解全校學(xué)生對這四個活動項目的選擇情況,體育老師從全體學(xué)生中隨機抽取了部分學(xué)生進行調(diào)查(規(guī)定每人必須并且只能選擇其中一個項目),并把調(diào)查結(jié)果繪制成如圖所示的統(tǒng)計圖,根據(jù)這個統(tǒng)計圖可以估計該學(xué)校1500名學(xué)生中選擇籃球項目的學(xué)生約為______名.

查看答案和解析>>

同步練習(xí)冊答案