【題目】如圖,在△ABC中,AB=5cm,BC=3cm,∠BAC與∠BCA的平分線相交于點(diǎn)O,點(diǎn)D在AB上,且AD=OD,DO的延長(zhǎng)線交BC于點(diǎn)E.試求△BDE的周長(zhǎng).
【答案】8cm
【解析】試題分析:根據(jù)等腰三角形的性質(zhì)和角平分線的定義易證∠DOA=∠OAC,即可得DE∥AC,再由角平分線的定義和平行線的性質(zhì)證得∠EOC=∠ECO,根據(jù)等腰三角形的性質(zhì)可得OE=CE,再由BE+DE+BD=BE+OE+OD+BD=BE+EC+BD+DA=AB+BC即可得△BDE的周長(zhǎng).
試題解析:
∵AD=OD,
∴∠DAO=∠DOA,
∵∠DAO=∠OAC,
∴∠DOA=∠OAC,
∴DE∥AC,
∴∠EOC=∠OCA,
∵∠OCA=∠OCE,
∴∠EOC=∠ECO,
∴OE=CE,
∴BE+DE+BD=BE+OE+OD+BD=BE+EC+BD+DA=AB+BC=5+3=8(cm),
∴△BDE的周長(zhǎng)=8cm.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直線AB、CD相交于點(diǎn)O,OE平分∠BOD,OF⊥CD,垂足為O.
(1)若∠EOF=54°,求∠AOC的度數(shù);
(2)①在∠AOD的內(nèi)部作射線OG⊥OE;
②試探索∠AOG與∠EOF之間有怎樣的關(guān)系?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=∠ACB=72°,CD平分∠ACB,則∠ADC=______.圖中有______個(gè)等腰三角形,它們是:_________________________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知A(1,-5),B(4,2),C(-1,0)三點(diǎn).
(1)點(diǎn)B關(guān)于x軸對(duì)稱點(diǎn)B′的坐標(biāo)為 ,點(diǎn)C關(guān)于y軸對(duì)稱點(diǎn)C′的坐標(biāo)為 ;
(2)求(1)中的△AB′C′的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線AB與x軸,y軸交于點(diǎn)A(10,0),B(0,-10),直線MT垂直于直線AB,垂足為M,與y軸交于點(diǎn)T(0,-2) .
(1)求點(diǎn)M的坐標(biāo);
(2)在線段MT的延長(zhǎng)線上找一點(diǎn)N,使MT=TN,求點(diǎn)N的坐標(biāo);
(3)若點(diǎn)D在x軸上,∠ABD=60°,E點(diǎn)在線段BD上運(yùn)動(dòng),∠AEB的平分線交AB于點(diǎn)P,∠EAB的平分線交線段BD于點(diǎn)Q,AQ與EP交于點(diǎn)R. 的值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,∠1=∠2,則不一定能使△ABD≌△ACD的條件是 ( )
A. AB=AC B. BD=CD C. ∠B=∠C D. ∠BDA=∠CDA
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于有理數(shù)x,y定義新運(yùn)算:x*y=ax+by -5,其中a,b為常數(shù).已知1*2=9,(-3)*3=-2,則a-b=
A.-1B.1C.-2D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】今年市委市政府積極推進(jìn)創(chuàng)建“全國(guó)文明城市”工作,市創(chuàng)城辦公室為了調(diào)查初中學(xué)生對(duì)“社會(huì)主義核心價(jià)值觀”內(nèi)容的了解程度(程度分為:“A﹣十分熟悉”,“B﹣了解較多”,“C﹣了解較少”,“D﹣不知道”),對(duì)我市一所中學(xué)的學(xué)生進(jìn)行了隨機(jī)抽樣調(diào)查,根據(jù)調(diào)查結(jié)果繪制了兩幅不完整的統(tǒng)計(jì)圖如圖,根據(jù)信息解答下列問題:
(1)本次抽樣調(diào)查了多少名學(xué)生;
(2)補(bǔ)全條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖;
(3)求扇形統(tǒng)計(jì)圖中“D﹣不知道”所在的扇形圓心角的度數(shù);
(4)若該中學(xué)共有2400名學(xué)生,請(qǐng)你估計(jì)這所中學(xué)的所有學(xué)生中,對(duì)“社會(huì)主義核心價(jià)值觀”內(nèi)容的了解程度為“十分熟悉”和“了解較多”的學(xué)生共有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠C=Rt∠,AB=5cm,BC=3cm,若動(dòng)點(diǎn)P從點(diǎn)C開始,按C→A→B→C的路徑運(yùn)動(dòng),且速度為每秒1cm,設(shè)出發(fā)的時(shí)間為t秒.
(1)出發(fā)2秒后,求△ABP的周長(zhǎng).
(2)問t滿足什么條件時(shí),△BCP為直角三角形?
(3)另有一點(diǎn)Q,從點(diǎn)C開始,按C→B→A→C的路徑運(yùn)動(dòng),且速度為每秒2cm,若P、Q兩點(diǎn)同時(shí)出發(fā),當(dāng)P、Q中有一點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也停止運(yùn)動(dòng).當(dāng)t為何值時(shí),直線PQ把△ABC的周長(zhǎng)分成相等的兩部分?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com