【題目】如圖,在ABC中,ADBC,垂足為DAD=CD,點EAD上,DE=BD,M、N分別是AB、CE的中點.

1)求證:ADB≌△CDE;

2)求MDN的度數(shù).

【答案】見解析

【解析】試題分析:(1)由垂直的定義得到ADB=∠ADC=90°,根據(jù)已知條件即可得到結論;

2)根據(jù)全等三角形的性質得到BAD=∠DCE,根據(jù)直角三角形的性質得到AM=DM,DN=CN,由等腰三角形的性質得到MAD=∠MDA,NCD=∠NDC,等量代換得到ADM=∠CDN,即可得到結論.

試題解析:(1)證明:ADBC,∴∠ADB=∠ADC=90°,在ABDCDE中,AD=CDADB=∠ADC,DB=DE,∴△ABD≌△CDE;

2)解:∵△ABD≌△CDE∴∠BAD=∠DCE,M、N分別是AB、CE的中點,AM=DM,DN=CN,∴∠MAD=∠MDANCD=∠NDC,∴∠ADM=∠CDN∵∠CDN+∠ADN=90°,∴∠ADM+∠ADN=90°∴∠MDN=90°

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】小梅在餐廳吃飯時,發(fā)現(xiàn)了一個有趣的問題:廚師喜歡將做好的油餅都切成一個個小扇形.小梅在想:如果第一次切去圓餅的一半,第二次切去剩余的一半,第三次繼續(xù)切去剩余的一半,……如圖所示.

1)如果繼續(xù)這樣切下去,能把這張油餅切完嗎?為什么?

2)如果依照上面的規(guī)律切了10次,那么剩下的油餅是整張油餅的幾分之幾?

3)如果廚師照上述方式切了次,那么他一共將這張油餅切去了多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】近幾年,隨著電子商務的快速發(fā)展,“電商包裹件”占“快遞件”總量的比例逐年增長,根據(jù)企業(yè)財報,某網(wǎng)站得到如下統(tǒng)計表:

(1)請選擇適當?shù)慕y(tǒng)計圖,描述2014﹣2017年“電商包裹件”占當年“快遞件”總量的百分比(精確到1%);

(2)若2018年“快遞件”總量將達到675億件,請估計其中“電商包裹件”約為多少億件?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖:在數(shù)軸上點表示數(shù)點表示數(shù)6,

1)A、B兩點之間的距離等于_________;

2)在數(shù)軸上有一個動點,它表示的數(shù)是,則的最小值是_________;

3)若點與點之間的距離表示為,點與點之間的距離表示為,請在數(shù)軸上找一點,使,則點表示的數(shù)是_________;

4)若在原點的左邊2個單位處放一擋板,一小球甲從點處以5個單位/秒的速度向右運動;同時另一小球乙從點處以2個單位/秒的速度向左運動,在碰到擋板后(忽略球的大小,可看作一點)兩球分別以原來的速度向相反的方向運動,設運動時間為秒,請用來表示甲、乙兩小球之間的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等邊三角形ABC中,AB=2,動點DB開始沿BC向點C運動,到達點C后停止運動,將△ABD繞點A旋轉后得到△ACE,則下列說法中,正確的是( 。

①DE的最小值為1;②ADCE的面積是不變的;在整個運動過程中,點E運動的路程為2;④在整個運動過程中,△ADE的周長先變小后變大.

A. ①③④ B. ①②③ C. ②③④ D. ①②④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(2016湖北省咸寧市)如圖,邊長為4的正方形ABCD內接于點O,點E上的一動點(不與AB重合),點F上的一點,連接OE、OF,分別與AB、BC交于點G,H,且EOF=90°,有以下結論:

;

②△OGH是等腰三角形;

四邊形OGBH的面積隨著點E位置的變化而變化;

④△GBH周長的最小值為

其中正確的是________(把你認為正確結論的序號都填上).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一只小蟲子落在數(shù)軸上的某點,第一次從向左跳一個單位到,第二次從向右跳個單位到,第三次從向左跳個單位到,第四次從向右跳個單位到,按以上規(guī)律跳了次時,它落在數(shù)軸上的點所表示的數(shù)恰好是2019,則這只小蟲的初始位置所在的數(shù)是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知點A、B在數(shù)軸上分別表示ab

1)對照數(shù)軸填寫下表:

A、B兩點的距離

2)若A、B兩點間的距離記為d,問:da、b有何數(shù)量關系?

3)在數(shù)軸上標出所有符合條件的整數(shù)點,使它到5-5的距離之和為10,并求所有這些整數(shù)的和;

4)若點C表示的數(shù)為x,當點C在什么位置時,取得的值最?最小值為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著人們經(jīng)濟收入的不斷提高,汽車已越來越多地進入到各個家庭.某大型超市為緩解停車難問題,建筑設計師提供了樓頂停車場的設計示意圖.按規(guī)定,停車場坡道口上坡要張貼限高標志,以便告知車輛能否安全駛入.如圖,地面所在的直線ME與樓頂所在的直線AC是平行的,CD的厚度為0.5m,求出汽車通過坡道口的限高DF的長(結果精確到0.1m,sin28°≈0.47,cos28°≈0.88,tan28°≈0.53).

查看答案和解析>>

同步練習冊答案