【題目】如圖,∠1+∠2=180°,∠DAE=∠BCF,DA平分∠BDF.
(1)AE與FC會(huì)平行嗎?說(shuō)明理由.
(2)AD與BC的位置關(guān)系如何?為什么?
(3)BC平分∠DBE嗎?為什么?
【答案】
(1)解:平行;
證明:∵∠2+∠CDB=180°,∠1+∠2=180°,
∴∠CDB=∠1,
∴AE∥FC
(2)解:平行,
證明:∵AE∥FC,
∴∠CDA+∠DAE=180°,
∵∠DAE=∠BCF
∴∠CDA+∠BCF=180°,
∴AD∥BC
(3)解:平分,
證明:∵AE∥FC,
∴∠EBC=∠BCF,
∵AD∥BC,
∴∠BCF=∠FDA,∠DBC=∠BDA,
又∵DA平分∠BDF,即∠FDA=∠BDA,
∴∠EBC=∠DBC,
∴BC平分∠DBE.
【解析】(1)∠1+∠2=180°而∠2+∠CDB=180°,則∠CDB=∠1,根據(jù)同位角相等,兩直線平行,求得結(jié)論;(2)要說(shuō)明AD與BC平行,只要說(shuō)明∠BCF+∠CDA=180°即可.而根據(jù)AE∥FC可得:∠CDA+∠DEA=180°,再據(jù)∠DAE=∠BCF就可以證得.(3)BC平分∠DBE即說(shuō)明∠EBC=∠DBC是否成立.根據(jù)AE∥FC,可得:∠EBC=∠BCF,據(jù)AD∥BC得到:∠BCF=∠FAD,∠DBC=∠BAD,進(jìn)而就可以證出結(jié)論.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用平行線的判定的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握同位角相等,兩直線平行;內(nèi)錯(cuò)角相等,兩直線平行;同旁內(nèi)角互補(bǔ),兩直線平行.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們知道:有兩條邊相等的三角形叫做等腰三角形.類似地,我們定義:至少有一組對(duì)邊相等的四邊形叫做等對(duì)邊四邊形.
【1】請(qǐng)寫(xiě)出一個(gè)你學(xué)過(guò)的特殊四邊形中是等對(duì)邊四邊形的圖形的名稱;
【2】如圖,在中,點(diǎn)分別在上,設(shè)相交于點(diǎn),若,.請(qǐng)你寫(xiě)出圖中一個(gè)與相等的角,并猜想圖中哪個(gè)四邊形是等對(duì)邊四邊形;
【3】在中,如果是不等于的銳角,點(diǎn)分別在上,且.探究:滿足上述條件的圖形中是否存在等對(duì)邊四邊形,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了求1+2+22+23+24+…+22018的值,可以設(shè)s=1+2+22+23+…+22018 , 則則2s=2+22+23+24+…+22018 , 所以2s﹣s=22019﹣1,即1+2+22+…+22018=22019﹣1,仿照以上推理,計(jì)算出1+7+72+73+…72020的值( )
A.72021﹣1
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,用四個(gè)螺絲將四條不可彎曲的木條圍成一個(gè)木框,不計(jì)螺絲大小,其中相鄰兩螺絲的距離依序?yàn)?、3、4、6,且相鄰兩木條的夾角均可調(diào)整.若調(diào)整木條的夾角時(shí)不破壞此木框,則任兩螺絲間距離的最大值為( )
A.5 B.6 C.7 D.10
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2016年3月完工的上海中心大廈是一座超高層地標(biāo)式摩天大樓,其高度僅次于世界排名第一的阿聯(lián)酋迪拜大廈,某人從距離地面高度263米的東方明珠球體觀光層測(cè)得上海中心大廈頂部的仰角是22.3°.已知東方明珠與上海中心大廈的水平距離約為900米,那么上海中心大廈的高度約為 米(精確到1米).(參考數(shù)據(jù):sin22.3°≈0.38,cos22.3°≈0.93.tan22.3°≈0.41)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】點(diǎn)P(2,﹣5)到x軸、y軸的距離分別為( 。
A. 2、5 B. 2、﹣5 C. 5、2 D. ﹣5、2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在菱形ABCD中,AB=5,聯(lián)結(jié)BD,sin∠ABD=.點(diǎn)P是射線BC上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)B重合),聯(lián)結(jié)AP,與對(duì)角線BD相交于點(diǎn)E,聯(lián)結(jié)EC.
(1)求證:AE=CE;
(2)當(dāng)點(diǎn)P在線段BC上時(shí),設(shè)BP=x,△PEC的面積為y,求y關(guān)于x的函數(shù)解析式,并寫(xiě)出它的定義域;
(3)當(dāng)點(diǎn)P在線段BC的延長(zhǎng)線上時(shí),若△PEC是直角三角形,求線段BP的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com