【題目】五邊形的頂點依次編號為1,2,3,4,5.若從某一頂點開始,沿正五邊形的邊順時針方向行走,頂點編號的數字是幾,就走幾個邊長,則稱這種走法為一次“移位”.如:小宇在編號為3的頂點上時,那么他應走3個邊長,即從3→4→5→1為第一次“移位”,這時他到達編號為1的頂點;然后從1→2為第二次“移位”.若小宇從編號為4的頂點開始,第2018次“移位”后,那么他所處的頂點的編號是( )
A. 1 B. 2 C. 3 D. 4
科目:初中數學 來源: 題型:
【題目】如圖1,長方形OABC的邊OA在數軸上,O為原點,長方形OABC的面積為12,OC邊長為3.
(1)數軸上點A表示的數為________.
(2)將長方形OABC沿數軸水平移動,移動后的長方形記為O′A′B′C′,移動后的長方形O′A′B′C′與原長方形OABC重疊部分(如圖2中陰影部分)的面積記為S.
①當S恰好等于原長方形OABC面積的一半時,數軸上點A′表示的數是多少?
②設點A的移動距離AA′=x.
(ⅰ)當S=4時,求x的值;
(ⅱ)D為線段AA′的中點,點E在線段OO′上,且OE=OO′,當點D,E所表示的數互為相反數時,求x的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】古希臘著名的畢達哥拉斯學派把1,3,6,10…這樣的數稱為“三角形數”,而把1,4,9,16…這樣的數稱為“正方形數”.從圖中可以發(fā)現,任何一個大于1的“正方形數”都可以看作兩個相鄰“三角形數”之和.下列等式中,符合這一規(guī)律的是( )
A. 13=3+10 B. 25=9+16 C. 36=15+21 D. 49=18+31
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(3分)如圖,AD是△ABC的角平分線,DE⊥AC,垂足為E,BF∥AC交ED的延長線于點F,若BC恰好平分∠ABF,AE=2BF.給出下列四個結論:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正確的結論共有( )
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】請根據下面X與Y的對話解答下列各小題:
X:我和Y都是多邊形,我們倆的內角和相加的結果為1440°;
Y:X的邊數與我的邊數之比為1∶3.
(1)求X與Y的外角和相加的度數;
(2)分別求出X與Y的邊數;
(3)試求出Y共有多少條對角線?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某市居民生活用水的費用由“城市供水費” 和“污水處理費” 兩部分組成.為了鼓勵市民節(jié)約用水,其中城市供水費按階梯式計費:一個月用水10噸以內(包括10噸)的用戶,每噸收1.5元;一個月用水超過10噸的用戶,10噸水仍按每噸1.5元收費,超過10噸的部分,按每噸2元收費.另外污水處理費按每噸0.65元收取.
(1)某居民5月份用水8噸,應交水費多少元? 6月份用水12噸,應交水費多少元?
(2)若某戶某月用水x噸,請你用含有x的代數式表示該月應交的水費.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△AOB中,兩直角邊OA、OB分別在x軸的負半軸和y軸的正半軸上,將△AOB繞點B逆時針旋轉90°后得到△A′O′B.若反比例函數 的圖像恰好經過斜邊A′B的中點C,S△ABO=4,tan∠BAO=2,則k的值為( )
A.3
B.4
C.6
D.8
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,在網格中建立平面直角坐標系,每個小正方形的邊長都是1個單位長度,四邊形ABCD的各頂點均在網格點上.
(1)將四邊形ABCD平移,使得D點平移到D1(3,4),畫出平移后的四邊形A1B1C1D1;
(2)畫出四邊形ABCD繞著原點O逆時針旋轉90°后的四邊形A2B2C2D2.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com