【題目】對于同一銳角α有:sin2α+cos2α1,現(xiàn)銳角A滿足sinA+cosA

試求:(1)sinAcosA的值;(2)sinAcosA的值.

【答案】(1);(2)±

【解析】

(1)利用同角的三角函數(shù)的關(guān)系sin2α+cos2α=1進行適當?shù)淖冃无D(zhuǎn)換來求解.

sinA+cosA2sin2A+cos2A+2sinAcosAsin2α+cos2α1, sinA+cosA代入,即可求出結(jié)果.

(2)(sinAcosA2sin2A+cos2A2sinAcosA,sin2α+cos2α1與第一步sinAcosA的值,代入即可求出結(jié)果.

(1)∵sinA+cosA

∴sin2A+cos2A+2sinAcosA,

1+2sinAcosA,

∴sinAcosA

(2)∵(sinA﹣cosA2=sin2A+cos2A﹣2sinAcosA,

=1﹣,

∴sinA﹣cosA=±

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】在我國古代數(shù)學著作《九章算術(shù)》中記載了這樣一個問題:今有圓材,埋在壁中,不知大小,以鋸鋸之,深一寸,鋸道長一尺,問徑幾何?用現(xiàn)代語言表述為:如圖,AB為⊙O的直徑,弦CDAB于點EAE = 1寸,CD = 10寸,求直徑AB的長.請你解答這個問題.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,直線l:y=3x+3與x軸交于點A,與y軸交于點B.把AOB沿y軸翻折,點A落到點C,拋物線過點B、C和D(3,0).

(1)求直線BD和拋物線的解析式.

(2)若BD與拋物線的對稱軸交于點M,點N在坐標軸上,以點N、B、D為頂點的三角形與MCD相似,求所有滿足條件的點N的坐標.

(3)在拋物線上是否存在點P,使SPBD=6?若存在,求出點P的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,∠ADC的平分線與AB交于E,點FDE的延長線上,∠BFE=90°,連接AF、CF,CFAB交于G.有以下結(jié)論:

①AE=BC

②AF=CF

③BF2=FGFC

④EGAE=BGAB

其中正確的個數(shù)是( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,過正方形ABCD的頂點B作直線l,過點A,C作直線l的垂線,垂足分別為E,F(xiàn),直線AE交CD于點G.

(1)求證:△ABE≌△BCF;

(2)若∠CBF=65°,求∠AGC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩條輪船同時從港口A出發(fā),甲輪船以每小時30海里的速度沿著北偏東60°的方向航行,乙輪船以每小時15海里的速度沿著正東方向行進,1小時后,甲船接到命令要與乙船會合,于是甲船改變了行進的速度,沿著東南方向航行,結(jié)果在小島C處與乙船相遇.假設(shè)乙船的速度和航向保持不變,求:

(1)港口A與小島C之間的距離;

(2)甲輪船后來的速度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某工廠擬建一座平面圖形為矩形且面積為200平方米的三級污水處理池(平面圖如圖ABCD所示).由于地形限制,三級污水處理池的長、寬都不能超過16米.如果池的外圍墻建造單價為每米400元,中間兩條隔墻建造單價為每米300元,池底建造單價為每平方米80元.(池墻的厚度忽略不計)當三級污水處理池的總造價為47200元時,求池長x.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°.

(1)利用直尺和圓規(guī)按下列要求作圖,并在圖中標明相應(yīng)的字母.(保留作圖痕跡,不寫作法)

①作AC的垂直平分線,交AB于點O,交AC于點D;

②以O為圓心,OA為半徑作圓,交OD的延長線于點E.

(2)在(1)所作的圖形中,解答下列問題.

①點B與⊙O的位置關(guān)系是__;(直接寫出答案)

②若DE=2,AC=8,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(4分)一元二次方程的根的情況是(

A.有兩個不相等的實數(shù)根 B.有兩個相等的實數(shù)根

C.沒有實數(shù)根 D無法確定

【答案】A

【解析】

試題∵△=方程有兩個不相等的實數(shù)根.故選A.

考點:根的判別式

型】單選題
結(jié)束】
9

【題目】已知直線y=kx(k>0)與雙曲線交于點A(x1,y1),B(x2,y2)兩點,則x1y2+x2y1的值為【 】

A.﹣6 B.﹣9 C.0 D.9

查看答案和解析>>

同步練習冊答案