【題目】已知:正方形ABCD中,對(duì)角線AC、BD交于點(diǎn)O,過(guò)O點(diǎn)的兩直線OE、OF互相垂直,分別交AB、BCE、F,連接EF

1)求證:OE=OF;

2)若AE=4CF=3,求EF的長(zhǎng);

3)若AB=8cm,請(qǐng)你計(jì)算四邊形OEBF的面積.

【答案】1)見(jiàn)解析;(2EF=5;(316cm2

【解析】

1)根據(jù)正方形的性質(zhì)可得OB=OC,∠OBE=OCF=45°,再利用同角的余角相等得到∠BOE=COF,從而推出△OBE≌△OCF,即可得OE=OF;

2)由(1)中的全等三角形可得BE=CF=3,由正方形的性質(zhì)可知AB=BC,推出BF=AE=4,再根據(jù)勾股定理求出EF即可;

3)由(1)中的全等三角形可將四邊形OEBF的面積轉(zhuǎn)化為△OBC的面積,等于正方形面積的四分之一.

1)∵四邊形ABCD為正方形

OB=OC,∠OBE=OCF=45°,BDAC

∴∠BOF+COF=90°

OEOF

∴∠BOF+BOE=90°

∴∠BOE=COF

在△OBE和△OCF中,

∵∠OBE=OCF,OB=OC,∠BOE=COF

∴△OBE≌△OCFASA

OE=OF

2)∵△OBE≌△OCF

BE=CF=3,

∵四邊形ABCD為正方形

AB=BC

AE+BE=BF+CF

BF=AE=4

EF=

3)∵△OBE≌△OCF

S四邊形OEBF=SOBE+SOBF

=SOCF+ SOBF

=SBOC

=S正方形ABCD

=

=16cm2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(解決問(wèn)題)已知,,是同一平面上的三個(gè)點(diǎn),以線段,為邊,分別作正三角形和正三角形,連接

1)如圖1,當(dāng)點(diǎn),在同一直線上時(shí),線段的大小關(guān)系是__________;

2)如圖2,當(dāng),為三角形的頂點(diǎn)時(shí)(點(diǎn),不在同一條直線上),判斷線段的大小關(guān)系是否發(fā)生改變,并說(shuō)明理由;

(類(lèi)比猜想)

3)已知,是同一平面上的三個(gè)點(diǎn),以線段為邊,分別作正方形,連接,,如圖3和圖4所示.判斷線段的大小關(guān)系,并在圖4(點(diǎn),不在同一條直線上)中證明你的判斷;

(推廣應(yīng)用)(4)上面的這些結(jié)論能否推廣到任意正多邊形(不必證明)?

5)如圖5,的大小關(guān)系是__________,并寫(xiě)出它們分別在哪兩個(gè)全等三角形中;

6)請(qǐng)?jiān)趫D6中連接圖中兩個(gè)頂點(diǎn),構(gòu)造處一組全等三角形,并寫(xiě)出這兩個(gè)全等的三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB為半圓O的直徑,C為AO的中點(diǎn),CDAB交半圓于點(diǎn)D,以C為圓心,CD為半徑畫(huà)弧交AB于E點(diǎn),若AB=4,則圖中陰影部分的面積是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】901班的全體同學(xué)根據(jù)自己的興趣愛(ài)好參加了六個(gè)學(xué)生社團(tuán)(每個(gè)學(xué)生必須參加且只參加一個(gè)),為了了解學(xué)生參加社團(tuán)的情況,學(xué)生會(huì)對(duì)該班參加各個(gè)社團(tuán)的人數(shù)進(jìn)行了統(tǒng)計(jì),繪制成了如圖不完整的扇形統(tǒng)計(jì)圖,已知參加讀書(shū)社的學(xué)生有15人,請(qǐng)解答下列問(wèn)題:

1)該班的學(xué)生共有 名;

2)若該班參加吉他社街舞社的人數(shù)相同,請(qǐng)你計(jì)算,吉他社對(duì)應(yīng)扇形的圓心角的度數(shù);

3901班學(xué)生甲、乙、丙是愛(ài)心社的優(yōu)秀社員,現(xiàn)要從這三名學(xué)生中隨機(jī)選兩名學(xué)生參加社區(qū)義工活動(dòng),請(qǐng)你用畫(huà)樹(shù)狀圖或列表的方法求出恰好選中甲和乙的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AC是平行四邊形ABCD的一條對(duì)角線,過(guò)AC中點(diǎn)O的直線分別交 ADBC 于點(diǎn) E,F

1)求證:四邊形AECF是平行四邊形;

2)當(dāng) EF AC 滿足什么條件時(shí),四邊形 AECF 是菱形?并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,轉(zhuǎn)盤(pán)被等分成10個(gè)扇形,每個(gè)扇形上面寫(xiě)有一個(gè)有理數(shù).任意轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán),求轉(zhuǎn)得下列各數(shù)的概率.

1)轉(zhuǎn)得正數(shù);

2)轉(zhuǎn)得負(fù)整數(shù);

3)轉(zhuǎn)得絕對(duì)值不大于5的數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形ABCD的邊長(zhǎng)是4cm,且∠ABC60°,EBC中點(diǎn),P點(diǎn)在BD上,則PE+PC的最小值為( 。cm

A.2B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(0, .

(1)求拋物線的解析式.

(2)拋物線與軸交于另一個(gè)交點(diǎn)為C,點(diǎn)D在線段AC上,已知AD=AB,若動(dòng)點(diǎn)PA出發(fā)沿線段AC以每秒1個(gè)單位長(zhǎng)度的速度勻速運(yùn)動(dòng),同時(shí)另一個(gè)動(dòng)點(diǎn)Q以某一速度從B出發(fā)沿線段BC勻速運(yùn)動(dòng),問(wèn)是否存在某一時(shí)刻,使線段PQ被直線BD垂直平分,若存在,求出點(diǎn)Q的運(yùn)動(dòng)速度;若不存在,請(qǐng)說(shuō)明理由.

(3)在(2)的前提下,過(guò)點(diǎn)B的直線軸的負(fù)半軸交于點(diǎn)M,是否存在點(diǎn)M,使以AB、M為頂點(diǎn)的三角形與相似,如果存在,請(qǐng)直接寫(xiě)出M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等腰三角形的兩邊分別為63,則此等腰三角形周長(zhǎng)為____;已知等腰三角形的一個(gè)內(nèi)角為50°,則它的頂角為____

查看答案和解析>>

同步練習(xí)冊(cè)答案