【題目】如圖,⊙O中,F(xiàn)G、AC是直徑,AB是弦,F(xiàn)G⊥AB,垂足為點(diǎn)P,過點(diǎn)C的直線交AB的延長(zhǎng)線于點(diǎn)D,交GF的延長(zhǎng)線于點(diǎn)E,已知AB=4,⊙O的半徑為
(1)分別求出線段AP、CB的長(zhǎng);
(2)如果OE=5,求證:DE是⊙O的切線;
(3)如果tan∠E= ,求DE的長(zhǎng).

【答案】
(1)解:∵AC為直徑,

∴∠ABC=90°,

在Rt△ABC中,AC=2 ,AB=4,

∴BC= =2,

∵直徑FG⊥AB,

∴AP=BP= AB=2


(2)證明∵AP=BP,AO=OC

∴OP為△ABC的中位線,

∴OP= BC=1,

=

= = ,

=

∵∠EOC=∠AOP,

∴△EOC∽△AOP,

∴∠OCE=∠OPA=90°,

∴OC⊥DE,

∴DE是⊙O的切線


(3)解:∵BC∥EP,

∴∠DCB=∠E,

∴tan∠DCB=tan∠E=

在Rt△BCD中,BC=2,tan∠DCB= = ,

∴BD=3,

∴CD= =

∵BC∥EP,

= ,即 = ,

∴DE=


【解析】(1)根據(jù)圓周角定理由AC為直徑得∠ABC=90°,在Rt△ABC中,根據(jù)勾股定理可計(jì)算出BC=2,再根據(jù)垂徑定理由直徑FG⊥AB得到AP=BP= AB=2;(2)易得OP為△ABC的中位線,則OP= BC=1,再計(jì)算出 = = ,根據(jù)相似三角形的判定方法得到△EOC∽△AOP,根據(jù)相似的性質(zhì)得到∠OCE=∠OPA=90°,然后根據(jù)切線的判定定理得到DE是⊙O的切線;(3)根據(jù)平行線的性質(zhì)由BC∥EP得到∠DCB=∠E,則tan∠DCB=tan∠E= ,在Rt△BCD中,根據(jù)正切的定義計(jì)算出BD=3,根據(jù)勾股定理計(jì)算出CD= ,然后根據(jù)平行線分線段成比例定理得 = ,再利用比例性質(zhì)可計(jì)算出DE=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABCDBE平分∠ABC,DE平分∠ADC,∠BAD70°,∠BCD40°,則∠BED的度數(shù)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖, 已知A(-4,-1),B(-5,-4),C(-1,-3),△ABC經(jīng)過平移得到的△A′B′C′,△ABC中任意一點(diǎn)P(x1,y1)平移后的對(duì)應(yīng)點(diǎn)為P′(x1+6,y1+4)。

(1)請(qǐng)?jiān)趫D中作出△A′B′C′;(2)寫出點(diǎn)A′、B′、C′的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠A=C,ADBE于點(diǎn)F,BCBE,點(diǎn)E,DC在同一條直線上.

(1)判斷ABCD的位置關(guān)系,并說明理由;

(2)若∠ABC=120°,求∠BEC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)九(1)班為了了解全班學(xué)生喜歡球類活動(dòng)的情況,采取全面調(diào)查的方法,從足球、乒乓球、籃球、排球等四個(gè)方面調(diào)查了全班學(xué)生的興趣愛好,根據(jù)調(diào)查的結(jié)果組建了4個(gè)興趣小組,并繪制成如圖所示的兩幅不完整的統(tǒng)計(jì)圖(如圖①,②,要求每位學(xué)生只能選擇一種自己喜歡的球類),請(qǐng)你根據(jù)圖中提供的信息解答下列問題:
(1)九(1)班的學(xué)生人數(shù)為 , 并把條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)扇形統(tǒng)計(jì)圖中m= , n= , 表示“足球”的扇形的圓心角是度;
(3)排球興趣小組4名學(xué)生中有3男1女,現(xiàn)在打算從中隨機(jī)選出2名學(xué)生參加學(xué)校的排球隊(duì),請(qǐng)用列表或畫樹狀圖的方法求選出的2名學(xué)生恰好是1男1女的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】填空,完成下面題目的解答,如圖,直線AB、CD被直線EF所截,H為CD與EF的交點(diǎn),∠1=,∠2=,GH⊥CD,垂足為H.

解:因?yàn)镚H⊥CD(已知),

所以∠2+∠3= (垂直的定義).

因?yàn)椤?=(已知),

所以∠3==

所以∠3=∠4=( ),

又因?yàn)椤?=(已知),

所以∠1=∠4,

所以AB∥ ( ).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】七(1)班小明同學(xué)通過《測(cè)量硬幣的厚度與質(zhì)量》實(shí)驗(yàn)得到了每枚硬幣的厚度和質(zhì)量,數(shù)據(jù)如下表.他從儲(chǔ)蓄罐取出一把5角和1元硬幣,為了知道總的金額,他把這些硬幣疊起來,用尺量出它們的總厚度為22.6mm,又用天平稱出總質(zhì)量為78.5g,請(qǐng)你幫助小明同學(xué)算出這把硬幣的總金額為______元.

1元硬幣

5角硬幣

每枚厚度(單位:mm)

1.8

1.7

每枚質(zhì)量(單位:g)

6.1

6.0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知OM平分∠AOB,ON平分∠BOC

(1)若∠AOB90°,∠BOC30°,則∠MON_____;

(2)若∠AOBα,∠BOCβ,其它條件不變,則∠MON______;

(3)當(dāng)OC運(yùn)動(dòng)到∠AOB內(nèi)部時(shí),其余條件不變,請(qǐng)你畫出圖形并猜想∠MON與∠AOB、∠BOC的數(shù)量關(guān)系式,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)P為定角∠AOB的平分線上的一個(gè)定點(diǎn),且∠MPN∠AOB互補(bǔ),若∠MPN在繞點(diǎn)P旋轉(zhuǎn)的過程中,其兩邊分別與OAOB相交于M、N兩點(diǎn),則以下結(jié)論:(1PM=PN恒成立;(2OM+ON的值不變;(3)四邊形PMON的面積不變;(4MN的長(zhǎng)不變,其中正確的個(gè)數(shù)為( 。

A. 4B. 3C. 2D. 1

查看答案和解析>>

同步練習(xí)冊(cè)答案