【題目】如圖,已知一次函數(shù)y=kx+b的圖象經(jīng)過A(-2,-1),B(1,3)兩點(diǎn),并且交x軸于點(diǎn)C,交y軸于點(diǎn)D.
(1)求該一次函數(shù)的解析式;
(2)求點(diǎn)C和點(diǎn)D的坐標(biāo);
(3)求△AOB的面積。
【答案】(1)y=x+;(2)C(-,0);(3) .
【解析】試題分析:(1)先把A點(diǎn)和B點(diǎn)坐標(biāo)代入y=kx+b得到關(guān)于k、b的方程組,解方程組得到k、b的值,從而得到一次函數(shù)的解析式;
(2)分別令x=0,y=0,代入即可確定C、D點(diǎn)坐標(biāo);
(3)根據(jù)三角形面積公式和△AOB的面積=S△AOD+S△BOD進(jìn)行計(jì)算即可.
試題解析:解:(1)把A(﹣2,﹣1),B(1,3)代入y=kx+b得: ,解得: .所以一次函數(shù)解析式為;
(2)令y=0,則,解得x=﹣,所以C點(diǎn)的坐標(biāo)為(﹣,0),把x=0代入得y=,所以D點(diǎn)坐標(biāo)為(0, );
(3)△AOB的面積=S△AOD+S△BOD=××2+××1=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲乙兩人各用一張正方形的紙片ABCD折出一個45°的角(如圖),兩人做法如下:
甲:將紙片沿對角線AC折疊,使B點(diǎn)落在D點(diǎn)上,則∠1=45°;
乙:將紙片沿AM、AN折疊,分別使B、D落在對角線AC上的一點(diǎn)P,則∠MAN=45°.
對于兩人的做法,下列判斷正確的是( )
A.甲乙都對
B.甲對乙錯
C.甲錯乙對
D.甲乙都錯
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我?鞓纷甙鄶(shù)學(xué)興趣小組開展了一次活動,過程如下:設(shè)∠BAC=θ(0°<θ<90°)小棒依次擺放在兩射線之間,并使小棒兩端分別落在兩射線上.
活動一:如圖甲所示,從點(diǎn)A1開始,依次向右擺放小棒,使小棒與小棒在端點(diǎn)處互相垂直,A1A2為第1根小棒.
數(shù)學(xué)思考:
(1)小棒能無限擺下去嗎?答: .(填“能“或“不能”)
(2)設(shè)AA1=A1A2=A2A3=1.則θ= 度;
活動二:如圖乙所示,從點(diǎn)A1開始,用等長的小棒依次向右擺放,其中A1A2為第1根小棒,且A1A2=AA1.
數(shù)學(xué)思考:
(3)若只能擺放5根小棒,求θ的范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】歲末年終,某甜品店讓利促銷,請運(yùn)用本學(xué)期所學(xué)知識回答下列問題:
(1)若香草口味蛋糕降價10%后的價格恰好比原價的一半多40元,該口味蛋糕原價是多少元?
(2)若同一杯奶茶提供兩種優(yōu)惠:一種是加量30%不加價,另一種是降價30%但是不加量.作為消費(fèi)者,你認(rèn)為哪種方式更實(shí)惠,為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直角三角形是特殊的三角形,所以不僅可以應(yīng)用一般三角形判定全等的方法,還有直角三角形特殊的判定方法,即 ________公理.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】分解因式-4x2y+2xy2-xy的結(jié)果是( )
A、-4(x2+2xy2-xy) B、-xy(-4x+2y-1)
C、-xy(4x-2y+1) D、-xy(4x-2y)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AC=BC,∠ACB=90,CE是過C點(diǎn)的一條直線,AD⊥CE于D,BE⊥CE于E,若DE=6,AD=3,則BE=______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列分解因式正確的是( 。
A. ﹣x2+4x=﹣x(x+4)B. x2+xy+x=x(x+y)
C. x2﹣4x+4=(x+2)(x+2)D. x(x﹣y)+y(y﹣x)=(x﹣y)2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com