【題目】已知∠MCN45°,點(diǎn)B在射線(xiàn)CM上,點(diǎn)A是射線(xiàn)CN上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)C重合).點(diǎn)B關(guān)于CN的對(duì)稱(chēng)點(diǎn)為點(diǎn)D,連接ABADCD,點(diǎn)F在直線(xiàn)BC上,且滿(mǎn)足AFAD.小明在探究圖形運(yùn)動(dòng)的過(guò)程中發(fā)現(xiàn)AFAB:始終成立.

如圖,當(dāng)<∠BAC90°時(shí).

求證:AFAB;

用等式表示線(xiàn)段之間的數(shù)量關(guān)系,并證明;

當(dāng)90°<∠BAC135°時(shí),直接用等式表示線(xiàn)段CFCDCA之間的數(shù)量關(guān)系是

【答案】①證明過(guò)程見(jiàn)解析,②CD+CFAC,過(guò)程見(jiàn)解析;

【解析】

①過(guò)點(diǎn)AAGBCG,作AHCDH,判斷出四邊形AGCH是矩形,得出∠GAH=90°,得出∠FAG=DAH,進(jìn)而判斷出FAG≌△DAH,即可得出結(jié)論; ②由矩形AGCH是正方形,判斷出CH=CG,∠CAH=DCA=45°,由①知,AGF≌△AHD,得出FG=DH,即CH=,再根據(jù)勾股定理得,AC= CH,即可得出結(jié)論;

同(1)的方法判斷出AHDAGF,得出DH=FG,進(jìn)而得出CH=,即可得出結(jié)論.

解:(1)①如圖1 ∵點(diǎn)D,B關(guān)于CD對(duì)稱(chēng),

AB=AD,∠BAC=DAC,∠ACD=MCN=45°,

∴∠DCM=90°

過(guò)點(diǎn)AAGBCG,作AHCDH,

AG=AH,∠AGC=AHC=DCM=90°,

∴四邊形AGCH是矩形,

∴∠GAH=90°,

AFAD

∴∠FAD=90°

∴∠FAG=DAH

∴△AGF≌△AHDASA),

AF=AD,

AB=AD

AF=AB;

②結(jié)論:CD+CF=AC, 理由:由①知,四邊形AGCH是矩形,AG=AH

∴矩形AGCH是正方形,

CH=CG,∠CAH=DCA=45°,

由①知,AGF≌△AHD,

FG=DH,

CD+CF=CH+DH+CG-FG=2CH

CH=

根據(jù)勾股定理得,AC=CH=,

CD+CF;

2)結(jié)論:CD-CF=AC 理由:如備用圖, 同(1)的方法得,AHDAGF,

DH=FG

CD-CF=CH+DH-FG+CG=2CH

CH=

根據(jù)勾股定理得,AC=CH=

CD-CF=AC

故答案為:CD-CF=AC

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解學(xué)生對(duì)網(wǎng)上在線(xiàn)學(xué)習(xí)效果的滿(mǎn)意度,某校設(shè)置了:非常滿(mǎn)意、滿(mǎn)意、基本滿(mǎn)意、不滿(mǎn)意四個(gè)選項(xiàng),隨機(jī)抽查了部分學(xué)生,要求每名學(xué)生都只選其中的一項(xiàng),并將抽查結(jié)果繪制成如圖統(tǒng)計(jì)圖(不完整).

請(qǐng)根據(jù)圖中信息解答下列問(wèn)題:

1)求被抽查的學(xué)生人數(shù),并補(bǔ)全條形統(tǒng)計(jì)圖;(溫馨提示:請(qǐng)畫(huà)在答題卷相對(duì)應(yīng)的圖上)

2)求扇形統(tǒng)計(jì)圖中表示滿(mǎn)意的扇形的圓心角度數(shù);

3)若該校共有1000名學(xué)生參與網(wǎng)上在線(xiàn)學(xué)習(xí),根據(jù)抽查結(jié)果,試估計(jì)該校對(duì)學(xué)習(xí)效果的滿(mǎn)意度是非常滿(mǎn)意滿(mǎn)意的學(xué)生共有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線(xiàn)ly=x,過(guò)點(diǎn)A(0,1)y軸的垂線(xiàn)交直線(xiàn)l于點(diǎn)B,過(guò)點(diǎn)B作直線(xiàn)l的垂線(xiàn)交y軸于點(diǎn)A1;過(guò)點(diǎn)A1y軸的垂線(xiàn)交直線(xiàn)l于點(diǎn)B1,過(guò)點(diǎn)B1作直線(xiàn)l的垂線(xiàn)交y軸于點(diǎn)A2;……按此作法繼續(xù)下去,則點(diǎn)A2020的坐標(biāo)為______________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)問(wèn)題探究:如圖1所示,有公共頂點(diǎn)A的兩個(gè)正方形ABCD和正方形AEFGAEAB,連接BEDG,請(qǐng)判斷線(xiàn)段BE與線(xiàn)段DG之間有怎樣的數(shù)量關(guān)系和位置關(guān)系.并請(qǐng)說(shuō)明理由.

2)理解應(yīng)用:如圖2所示,有公共頂點(diǎn)A的兩個(gè)正方形ABCD和正方形AEFG,AEAB,AB10,將正方形AEFG繞點(diǎn)A在平面內(nèi)任意旋轉(zhuǎn),當(dāng)∠ABE15°,且點(diǎn)DE、G三點(diǎn)在同一條直線(xiàn)上時(shí),請(qǐng)直接寫(xiě)出AE的長(zhǎng)   ;

3)拓展應(yīng)用:如圖3所示,有公共頂點(diǎn)A的兩個(gè)矩形ABCD和矩形AEFG,AD4,AB4,AG4AE4,將矩形AEFG繞點(diǎn)A在平面內(nèi)任意旋轉(zhuǎn),連接BDDE,點(diǎn)MN分別是BD,DE的中點(diǎn),連接MN,當(dāng)點(diǎn)D、E、G三點(diǎn)在同一條直線(xiàn)上時(shí),請(qǐng)直接寫(xiě)出MN的長(zhǎng)   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖①,在矩形中,,垂足是.點(diǎn)是點(diǎn)關(guān)于的對(duì)稱(chēng)點(diǎn),連接

1)求的長(zhǎng);

2)若將沿著射線(xiàn)方向平移,設(shè)平移的距離為(平移距離指點(diǎn)沿方向所經(jīng)過(guò)的線(xiàn)段長(zhǎng)度).當(dāng)點(diǎn)分別平移到線(xiàn)段上時(shí),直接寫(xiě)出相應(yīng)的的值.

3)如圖②,將繞點(diǎn)順時(shí)針旋轉(zhuǎn)一個(gè)角,記旋轉(zhuǎn)中,在旋轉(zhuǎn)過(guò)程中,設(shè)所在的直線(xiàn)與直線(xiàn)交于點(diǎn),與直線(xiàn)交于點(diǎn).是否存在這樣的兩點(diǎn),使為等腰三角形?若存在,求出此時(shí)的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩地高速鐵路建設(shè)成功,一列動(dòng)車(chē)從甲地開(kāi)往乙地,一列普通列車(chē)從乙地開(kāi)往甲地,兩車(chē)均勻速行駛并同時(shí)出發(fā),設(shè)普通列車(chē)行駛的時(shí)間為(小時(shí)),兩車(chē)之間的阻離為(千米),圖中的折線(xiàn)表示之間的函數(shù)關(guān)系,則圖中的值為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,拋物線(xiàn)正半軸于點(diǎn),將拋物線(xiàn)先向右平移個(gè)單位,再向下平移個(gè)單位得到拋物線(xiàn),交于點(diǎn),直線(xiàn)于點(diǎn)

1)求拋物線(xiàn)的解析式;

2)點(diǎn)是拋物線(xiàn)(含端點(diǎn))間的一點(diǎn),作軸交拋物線(xiàn)于點(diǎn),連按,.當(dāng)的面積為時(shí), 求點(diǎn)的坐標(biāo);

3)如圖②,將直線(xiàn)向上平移,交拋物線(xiàn)于點(diǎn)、,交拋物線(xiàn)于點(diǎn)、,試判斷的值是否為定值,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線(xiàn)軸交于點(diǎn),與軸的交點(diǎn)在點(diǎn)與點(diǎn)之間(不包括這兩點(diǎn)),對(duì)稱(chēng)軸為直線(xiàn).有下列結(jié)論:

;②;③;④若點(diǎn),在拋物線(xiàn)上,則.其中正確結(jié)論的個(gè)數(shù)是()

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知二次函數(shù)和二次函數(shù)圖象的頂點(diǎn)分別為,與軸分別相交于兩點(diǎn)(點(diǎn)在點(diǎn)的左邊)和、兩點(diǎn)(點(diǎn)在點(diǎn)的左邊),

     

1)函數(shù)的頂點(diǎn)坐標(biāo)為______;當(dāng)二次函數(shù),值同時(shí)隨著的增大而增大時(shí),則的取值范圍是_______;

2)判斷四邊形的形狀(直接寫(xiě)出,不必證明);

3)拋物線(xiàn),均會(huì)分別經(jīng)過(guò)某些定點(diǎn);

①求所有定點(diǎn)的坐標(biāo);

②若拋物線(xiàn)位置固定不變,通過(guò)平移拋物線(xiàn)的位置使這些定點(diǎn)組成的圖形為菱形,則拋物線(xiàn)應(yīng)平移的距離是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案