【題目】某地2016年為做好“精準扶貧”,投入資金1280萬元用于異地安置,并規(guī)劃投入資金逐年增加,2018年在2016年的基礎上增加投入資金1600萬元.
(1)從2016年到2018年,該地投入異地安置資金的年平均增長率為多少?
(2)在2018年異地安置的具體實施中,該地計劃投入資金不低于500萬元用于優(yōu)先搬遷租房獎勵,規(guī)定前800戶(含第800戶)每戶每天獎勵10元,800戶以后每戶每天獎勵5元,按租房400天計算,求2018年該地至少有多少戶享受到優(yōu)先搬遷租房獎勵.
【答案】(1)從2016年到2018年,該地投入異地安置資金的年平均增長率為50%;(2)2018年該地至少有1700戶享受到優(yōu)先搬遷租房獎勵.
【解析】
(1)設年平均增長率為x,根據:2016年投入資金×(1+增長率)2=2018年投入資金,列出方程求解可得;
(2)設2018年該地有a戶享受到優(yōu)先搬遷租房獎勵,根據:前800戶獲得的獎勵總數+800戶以后獲得的獎勵總和≥500萬,列不等式求解可得.
(1)設該地投入異地安置資金的年平均增長率為x,
根據題意得:
解得,(不合題意,舍去).
答:從2016年到2018年,該地投入異地安置資金的年平均增長率為50%.
(2)設2018年該地有a戶享受到優(yōu)先搬遷租房獎勵,
根據題意得:,
解得:.
答:2018年該地至少有1700戶享受到優(yōu)先搬遷租房獎勵.
科目:初中數學 來源: 題型:
【題目】閱讀下列材料,完成任務:
自相似圖形
定義:若某個圖形可分割為若干個都與它相似的圖形,則稱這個圖形是自相似圖形.例如:正方形ABCD中,點E、F、G、H分別是AB、BC、CD、DA邊的中點,連接EG,HF交于點O,易知分割成的四個四邊形AEOH、EBFO、OFCG、HOGD均為正方形,且與原正方形相似,故正方形是自相似圖形.
任務:
(1)圖1中正方形ABCD分割成的四個小正方形中,每個正方形與原正方形的相似比為 ;
(2)如圖2,已知△ABC中,∠ACB=90°,AC=4,BC=3,小明發(fā)現△ABC也是“自相似圖形”,他的思路是:過點C作CD⊥AB于點D,則CD將△ABC分割成2個與它自己相似的小直角三角形.已知△ACD∽△ABC,則△ACD與△ABC的相似比為 ;
(3)現有一個矩形ABCD是自相似圖形,其中長AD=a,寬AB=b(a>b).
請從下列A、B兩題中任選一條作答:我選擇 題.
A:①如圖3﹣1,若將矩形ABCD縱向分割成兩個全等矩形,且與原矩形都相似,則a= (用含b的式子表示);
②如圖3﹣2若將矩形ABCD縱向分割成n個全等矩形,且與原矩形都相似,則a= (用含n,b的式子表示);
B:①如圖4﹣1,若將矩形ABCD先縱向分割出2個全等矩形,再將剩余的部分橫向分割成3個全等矩形,且分割得到的矩形與原矩形都相似,則a= (用含b的式子表示);
②如圖4﹣2,若將矩形ABCD先縱向分割出m個全等矩形,再將剩余的部分橫向分割成n個全等矩形,且分割得到的矩形與原矩形都相似,則a= (用含m,n,b的式子表示).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知某市2017年企業(yè)用水量x(噸)與該月應交的水費y(元)之間的函數關系如圖所示.
(1)求y關于x的函數關系式;
(2)若某企業(yè)2017年10月份的水費為620元,求該企業(yè)2017年10月份的用水量;
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠DBC=90°,∠ABD=30°,∠ADB=75°,AC與BD交于點E,若CE=2AE=4,則DC的長為________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某工人計劃加工一批產品,如果每小時加工產品10個,就可以在預定時間完成任務,如果每小時多加工2個,就可以提前1小時完成任務.
(1)該產品的預定加工時間為幾小時?
(2)若該產品銷售時的標價為100元/個,按標價的八折銷售時,每個仍可以盈利25元,該批產品總成本為多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,在平面直角坐標系中,矩形OABC的邊OA、OC分別在x軸的正半軸、y軸的正半軸上,且OA、OC()的長是方程的兩個根.
(1)如圖,求點A的坐標;
(2)如圖,將矩形OABC沿某條直線折疊,使點A與點C重合,折痕交CB于點D,交OA于點E.求直線DE的解析式;
(3)在(2)的條件下,點P在直線DE上,在直線AC上是否存在點Q,使以點A、B、P、Q為頂點的四邊形是平行四邊形.若存在,請求出點Q坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一次函數 y=k x+b 與反比例函數 圖象交于點 A (2,m) 和點 B(n,-2).
(1) 求此一次函數解析式及m、n的值;
(2) 結合圖象求不等式的解集.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲、乙兩個工程隊計劃修建一條長15千米的鄉(xiāng)村公路,已知甲工程隊每天比乙工程隊每天多修路0.5千米,乙工程隊單獨完成修路任務所需天數是甲工程隊單獨完成修路任務所需天數的1.5倍.
(1)求甲、乙兩個工程隊每天各修路多少千米?
(2)若甲工程隊每天的修路費用為0.5萬元,乙工程隊每天的修路費用為0.4萬元,要使兩個工程隊修路總費用不超過5.2萬元,甲工程隊至少修路多少天?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在同一平面內,兩條直線相交時最多有1個交點,三條直線相交時最多有3個交點,四條直線相交時最多有6個交點,…,那么十條直線相交時最多有____個交點.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com