【題目】如圖,已知點(diǎn),直線與兩坐標(biāo)軸分別交于A,B兩點(diǎn)點(diǎn)D,E分別是OB,AB上的動(dòng)點(diǎn),則周長(zhǎng)的最小值是______.
【答案】
【解析】
作點(diǎn)C關(guān)于OB的對(duì)稱點(diǎn) ,作點(diǎn)C關(guān)于AB的對(duì)稱點(diǎn),連接,交AB于點(diǎn)E,交OB于點(diǎn)D,此時(shí)周長(zhǎng)最小,可以證明這個(gè)最小值就是線段,根據(jù)勾股定理可求周長(zhǎng)的最小值.
如圖,作點(diǎn)C關(guān)于OB的對(duì)稱點(diǎn),作點(diǎn)C關(guān)于AB的對(duì)稱點(diǎn),連接,交AB于點(diǎn)E,交OB于點(diǎn)D,
直線與兩坐標(biāo)軸分別交于A,B兩點(diǎn)
點(diǎn),點(diǎn)
,且,
,
點(diǎn)C關(guān)于OB的對(duì)稱點(diǎn),
∴,
點(diǎn)C關(guān)于AB的對(duì)稱點(diǎn),
∴AC=,∠BAO=∠=45°,
∴=90°,
點(diǎn)
由軸對(duì)稱的性質(zhì),可得CE=,CD=D,
當(dāng)點(diǎn),點(diǎn)E,點(diǎn)D,點(diǎn)共線時(shí),的周長(zhǎng)=CD+CE+DE=+DE+D=,
此時(shí)的周長(zhǎng)最小,
在Rt△中, .
的周長(zhǎng)最小值為
故答案為:
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題探究
(1)如圖1,請(qǐng)?jiān)诎霃綖?/span>的半圓內(nèi)(含弧和直徑)畫(huà)出面積最大的三角形,并求出這個(gè)三角形的面積;
(2)如圖2,請(qǐng)?jiān)诎霃綖?/span>的內(nèi)(含。┊(huà)出面積最大的矩形,并求出這個(gè)矩形的面積;
問(wèn)題解決
(3)如圖3,是一塊草坪,其中,,,某開(kāi)發(fā)商現(xiàn)準(zhǔn)備再征一塊地,把擴(kuò)充為四邊形,使,是否存在面積最大的四邊形?若存在,求出四邊形的最大面積;若不存在,請(qǐng)說(shuō)明理由.(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形網(wǎng)格上有6個(gè)三角形:①△ABC,②△CDB,③△DEB,④△FBG,⑤△HGF,⑥△EKF. 在②~⑥中,與①相似的三角形的個(gè)數(shù)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角坐標(biāo)系中,以點(diǎn)P為圓心的圓弧與x軸交于A,B兩點(diǎn),已知P(4,2)和A(2,0),則點(diǎn)B的坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線l1的解析式為y=2x﹣2,直線l1與x軸交于點(diǎn)D,直線l2:y=kx+b與x軸交于點(diǎn)A,且經(jīng)過(guò)點(diǎn)B,直線l1、l2交于點(diǎn)C(m,2).
(1)求m;
(2)求直線l2的解析式;
(3)根據(jù)圖象,直接寫出1<kx+b<2x﹣2的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)計(jì)劃把一批貨物用一列火車運(yùn)往某地已知這列火車可掛A,B兩種不同規(guī)格的貨車廂共40節(jié),使用A型車廂每節(jié)費(fèi)用6000元,使用B型車廂每節(jié)費(fèi)用為8000元.
設(shè)運(yùn)送這批貨物的總費(fèi)用為y元,這列火車掛A型車廂x節(jié),寫出y關(guān)于x的函數(shù)表達(dá)式,并求出自變量x的取值范圍;
已知A型車廂數(shù)不少于B型車廂數(shù),運(yùn)輸總費(fèi)用不低于276000元,問(wèn)有哪些不同運(yùn)送方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,每個(gè)小正方形的邊長(zhǎng)為1,在方格紙內(nèi)將△ABC經(jīng)過(guò)一次平移后得到△A′B′C′,圖中標(biāo)出了點(diǎn)B的對(duì)應(yīng)點(diǎn)B′,利用網(wǎng)格點(diǎn)畫(huà)圖和無(wú)刻度的直尺畫(huà)圖并解答(保留畫(huà)圖痕跡):
(1)畫(huà)出△A′B′C′;
(2)畫(huà)出△ABC的高,即線段BD;
(3)連接AA′、 CC′,那么AA′與CC′的關(guān)系是________;線段AC掃過(guò)圖形的面積為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線CB∥OA,∠C=∠A=120°,E、F在CB上,且滿足∠FOB=∠AOB,OE平分∠COF.
(1)求∠EOB的度數(shù);
(2)若平行移動(dòng)AB,那么∠OBC:∠OFC的值是否隨之發(fā)生變化?若變化,找出變化規(guī)律或求出變化范圍;若不變,求出這個(gè)比值;
(3)在平行移動(dòng)AB的過(guò)程中,是否存在某種情況,使∠OEC=∠OBA?若存在,求出其度數(shù);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形ABCD中,∠BAD=60°,AB=2,E是DC邊上一個(gè)動(dòng)點(diǎn),F是AB邊上一點(diǎn),∠AEF=30°.設(shè)DE=x,圖中某條線段長(zhǎng)為y,y與x滿足的函數(shù)關(guān)系的圖象大致如圖所示,則這條線段可能是圖中的( ).
A. 線段EC B. 線段AE C. 線段EF D. 線段BF
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com