【題目】如圖,在正方形網(wǎng)格上有6個三角形:①△ABC,②△CDB,③△DEB,④△FBG,⑤△HGF,⑥△EKF. 在②~⑥中,與①相似的三角形的個數(shù)是 .
【答案】3
【解析】解:AB=1,AC= ,BC= = ,CD=1,BD=2 ,DE=2,BF=EF= ,BE=2 ,F(xiàn)H=2,EK=HG= ,F(xiàn)G= = ,BG=5,
∵ = , = , = ,
∴△CDB與△ABC不相似;
∵ = , = =2, = =2,
∴△DEB∽△ABC;
∵ = , = = , = = ,
∵△FBG∽△ABC;
∵ = , = = , = = ,
∴△HGF∽△ABC;
∵ = , = = , = = ,
∴△EKF與△ABC不相似.
所以答案是3.
【考點精析】關(guān)于本題考查的相似三角形的判定,需要了解相似三角形的判定方法:兩角對應(yīng)相等,兩三角形相似(ASA);直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似; 兩邊對應(yīng)成比例且夾角相等,兩三角形相似(SAS);三邊對應(yīng)成比例,兩三角形相似(SSS)才能得出正確答案.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為響應(yīng)黨的“文化自信”號召,某校開展了古詩詞誦讀大賽活動,現(xiàn)隨機抽取部分同學(xué)的成績進(jìn)行統(tǒng)計,并繪制成如下的兩個不完整的統(tǒng)計圖,請結(jié)合圖中提供的信息,解答下列問題:
(1)_____,并把頻數(shù)分布直方圖補充完整;
(2)求扇形的圓心角度數(shù),成績眾數(shù)落在多少分之間;
(3)如果全校有2000名學(xué)生參加這次活動,90分以上(含90分)為優(yōu)秀,那么估計獲得優(yōu)秀獎的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點O在直線AB上,OC⊥AB,△ODE中,∠ODE=90°,∠EOD=60°,先將△ODE一邊OE與OC重合,然后繞點O順時針方向旋轉(zhuǎn),當(dāng)OE與OB重合時停止旋轉(zhuǎn).
(1)當(dāng)OD在OA與OC之間,且∠COD=20°時,則∠AOE=______;
(2)試探索:在△ODE旋轉(zhuǎn)過程中,∠AOD與∠COE大小的差是否發(fā)生變化?若不變,請求出這個差值;若變化,請說明理由;
(3)在△ODE的旋轉(zhuǎn)過程中,若∠AOE=7∠COD,試求∠AOE的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,E、F分別是CD、BC上的點.若∠AEF=90°,則一定有( )
A.△ADE∽△ECF
B.△BCF∽△AEF
C.△ADE∽△AEF
D.△AEF∽△ABF
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩位同學(xué)同解一道題目:“如圖,F(xiàn)、G是直線AB上的兩點,D是AC上的一點,且DF∥CB,∠E=∠C,請寫出與△ABC相似的三角形,并加以證明”. 甲同學(xué)的解答得到了老師的好評.
乙同學(xué)的解答是這樣的:“與△ABC相似的三角形只有△AFD,證明如下:
∵DF∥CB,
∴△AFD∽△ABC.”
乙同學(xué)的解答正確嗎?若不正確,請你改正.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一個三角形和一個矩形按照如圖的方式擴大,使他們的對應(yīng)邊之間的距離均為1,得到新的三角形和矩形,下列說法正確的是 ( )
A.新三角形與原三角形相似
B.新矩形與原矩形相似
C.新三角形與原三角形、新矩形與原矩形都相似
D.都不相似
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點,直線與兩坐標(biāo)軸分別交于A,B兩點點D,E分別是OB,AB上的動點,則周長的最小值是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系上有點A(1,0),點A第一次跳動至點,第二次點跳動至點第三次點跳動至點,第四次點跳動至點……,依此規(guī)律跳動下去,則點與點之間的距離是( )
A. 2017B. 2018C. 2019D. 2020
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com