【題目】如圖,一面墻上有一個矩形的門洞,現(xiàn)要將它改為一個圓弧形的門洞,圓弧所在的圓外接矩形,已知矩形的高AC=2米,寬CD=米.

(1)求此圓形門洞的半徑;

(2)求要打掉墻體的面積.

【答案】 (1)圓形門洞的半徑為;(2)要打掉墻體的面積為(π﹣)平方米

【解析】

1)先證得BC是直徑,在直角三角形BCD,BDCD的長利用勾股定理求出BC的長,即可求得半徑;

2)打掉墻體的面積=2S扇形OACSAOC+S扇形OABSAOB,根據(jù)扇形的面積和三角形的面積求出即可

1)連結(jié)ADBC

∵∠BDC=90°,BC是直徑,BC==∴圓形門洞的半徑為

2)取圓心O,連結(jié)OA.由上題可知OA=OB=AB=,∴△AOB是正三角形,∴∠AOB=60°,AOC=120°,SAOB=SAOC=,S=2S扇形OACSAOC+S扇形OABSAOB=2+)=π﹣,∴打掉墻體面積為π﹣平方米

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,銳角中,分別是,邊上的點,,,且,、交于點,若,則的大小是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,為線段上一動點(不與點重合),在同側(cè)分別作等邊三角形和等邊三角形交于點,交于點,交于點,連結(jié).以下結(jié)論:①;②;③;④是等邊三角形,恒成立的是______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解方程

(1)

(2)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在銳角三角形ABC,直線lBC的中垂線射線m為∠ABC的角平分線,直線lm相交于點P.若∠BAC=60°,ACP=24°,則∠ABP的度數(shù)是( )

A. 24° B. 30° C. 32° D. 36°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AD既是△ABC的中線,又是角平分線,請判斷:

(1)△ABC的形狀;

(2)AD是否過△ABC外接圓的圓心O,⊙O是否是△ABC的外接圓,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學校要開展校園文化藝術(shù)節(jié)活動,為了合理編排節(jié)目,對學生最喜愛的歌曲、舞蹈、小品、相聲四類節(jié)目進行了一次隨機抽樣調(diào)查(每名學生必須選擇且只能選擇一類),并將調(diào)查結(jié)果繪制成如下不完整統(tǒng)計圖.

請你根據(jù)圖中信息,回答下列問題:

(1)本次共調(diào)查了  名學生.

(2)在扇形統(tǒng)計圖中,歌曲所在扇形的圓心角等于  度.

(3)補全條形統(tǒng)計圖(標注頻數(shù)).

(4)根據(jù)以上統(tǒng)計分析,估計該校2000名學生中最喜愛小品的人數(shù)為  人.

(5)九年一班和九年二班各有2名學生擅長舞蹈,學校準備從這4名學生中隨機抽取2名學生參加舞蹈節(jié)目的編排,那么抽取的2名學生恰好來自同一個班級的概率是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點DRt△ABC斜邊AB的中點,過點B、C分別作BE∥CD,CE∥BD.

(1)∠A=60°,AC=,求CD的長;

(2)求證:BC⊥DE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等腰三角形ABC的底邊BC長為4,面積是12,腰AB的垂直平分線EF分別交AB,AC于點E、F,若點D為底邊BC的中點,點M為線段EF上一動點,則△BDM的周長的最小值為_____

查看答案和解析>>

同步練習冊答案