如圖,在由邊長為1的25個小正方形組成的正方形網(wǎng)格上有一個△ABC,在這個網(wǎng)格上畫一個與△ABC相似,且面積最大的△A1B1C1(A1,B1,C1,三點都在格點上).則這個三角形的面積是
5
5
分析:如圖可得出AC=
10
,則AC的對應(yīng)邊A1C1最長的長度為
50
,所以可依次作出A1B1,B1C1.即△A1B1C1,△A1B1C1的面積可用相似比求解.
解答:解:利用勾股定理得出△ABC各邊長AB=
2
,BC=2,AC=
10

故AC的對應(yīng)邊A1C1最長的長度為
5
×
10
=
50
=5
2
,A1C1=5
2
,A1B1=
10
,B1C1=2
5

A1C1
AC
=
50
10
=
5
,
∴S
SA1B1C1
S△ABC
=
(A1C1)2
(AC)2
=5,
∵S△ABC=
1
2
×1×2=1,
∴△A1B1C1的面積為:5.
點評:本題考查了位似圖形的意義及作圖能力.解題的關(guān)鍵是根據(jù)AC=
10
,找到AC的對應(yīng)邊最長的長度為
50
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

24、如圖,在由邊長為1的小正方形組成的方格紙中,有兩個全等的三角形,即△A1B1C1和△A2B2C2
(1)請你指出在方格紙內(nèi)如何運用平移、旋轉(zhuǎn)變換,將△A1B1C1重合到△A2B2C2上;
(2)在方格紙中將△A1B1C1經(jīng)過怎樣的變換后可以與△A2B2C2成中心對稱圖形,畫出變換后的三角形并標(biāo)出對稱中心.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,在由邊長為1的小正方形組成的網(wǎng)格中,點A、B、C、D、E都在小正方形的頂點上,求tan∠ADC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•阜新)如圖,在由邊長為1的小正方形組成的網(wǎng)格中,三角形ABC的頂點均落在格點上.
(1)將△ABC繞點O順時針旋轉(zhuǎn)90°后,得到△A1B1C1.在網(wǎng)格中畫出△A1B1C1;
(2)求線段OA在旋轉(zhuǎn)過程中掃過的圖形面積;(結(jié)果保留π)
(3)求∠BCC1的正切值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在由邊長為1的小正方形組成的方格紙中,有兩個全等的三角形,即△A1B1C1和△A2B2C2.請你指出在方格紙內(nèi)如何運用平移、旋轉(zhuǎn)變換,將△A1B1C1重合到△A2B2C2上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在由邊長為1的小正方形組成的網(wǎng)格中,△ABC的三個頂點均在格點上,請按要求完成下列各題:
(1)線段BC的長為
5
5
,△ABC的面積為
5
5

(2)畫線段AP(P為格點),使AP=BC(畫出所有可能情形).
(3)試說明:∠BAC=90°.

查看答案和解析>>

同步練習(xí)冊答案