【題目】計算:4sin60°﹣( ﹣1

【答案】解:原式=4× ﹣2﹣2 =2 ﹣2﹣2
=﹣2
【解析】依據(jù)特殊銳角三角函數(shù)值、負(fù)整數(shù)指數(shù)冪的性質(zhì)、二次根式的性質(zhì)進(jìn)行解答即可.
【考點精析】解答此題的關(guān)鍵在于理解整數(shù)指數(shù)冪的運算性質(zhì)的相關(guān)知識,掌握aman=am+n(m、n是正整數(shù));(amn=amn(m、n是正整數(shù));(ab)n=anbn(n是正整數(shù));am/an=am-n(a不等于0,m、n為正整數(shù));(a/b)n=an/bn(n為正整數(shù)),以及對特殊角的三角函數(shù)值的理解,了解分母口訣:30度、45度、60度的正弦值、余弦值的分母都是2,30度、45度、60度的正切值、余切值的分母都是3,分子口訣:“123,321,三九二十七”.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知反比例函數(shù)y=的圖象經(jīng)過點A(﹣3,﹣2).

(1)求反比例函數(shù)的解析式;
(2)若點B(1,m),C(3,n)在該函數(shù)的圖象上,試比較m與n的大小.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,點D為邊CB上的一個動點(點D不與點B重合),過D作DO⊥AB,垂足為O,點B′在邊AB上,且與點B關(guān)于直線DO對稱,連接DB′,AD.

(1)求證:△DOB∽△ACB;
(2)若AD平分∠CAB,求線段BD的長;
(3)當(dāng)△AB′D為等腰三角形時,求線段BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠B=30°,BC的垂直平分線交AB于點E,垂足為D,CE平分∠ACB.若BE=2,則AE的長為( 。

A.
B.1
C.
D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AD是△ABC的中線,tanB=,cosC=,AC=.求:

(1)BC的長;
(2)sin∠ADC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1所示,在△ABC中,點O是AC上一點,過點O的直線與AB,BC的延長線分別相交于點M,N.

(1)【問題引入】
若點O是AC的中點, = ,求 的值;
溫馨提示:過點A作MN的平行線交BN的延長線于點G.
(2)若點O是AC上任意一點(不與A,C重合),求證: =1;
(3)【拓展應(yīng)用】
如圖2所示,點P是△ABC內(nèi)任意一點,射線AP,BP,CP分別交BC,AC,AB于點D,E,F(xiàn),若 = , = ,求 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=ax2+ x+c與x軸交于A,B兩點,與y軸交于丁C,且A(2,0),C(0,﹣4),直線l:y=﹣ x﹣4與x軸交于點D,點P是拋物線y=ax2+ x+c上的一動點,過點P作PE⊥x軸,垂足為E,交直線l于點F.

(1)試求該拋物線表達(dá)式;
(2)如圖(1),四邊形PCOF是平行四邊形,求P點的坐標(biāo);
(3)如圖(2),過點P作PH⊥y軸,垂足為H,連接AC.

①求證:△ACD是直角三角形;
②試問當(dāng)P點橫坐標(biāo)為何值時,使得以點P、C、H為頂點的三角形與△ACD相似?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)要求進(jìn)行計算:
(1)解方程:2x2﹣3x=0;
(2)解不等式組:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,底面積為30cm2的空圓柱容器內(nèi)水平放置著由兩個實心圓柱組成的“幾何體”,現(xiàn)向容器內(nèi)勻速注水,注滿為止,在注水過程中,水面高度h(cm)與注水時間t(s)之間的關(guān)系如圖②.
(1)求圓柱形容器的高和勻速注水的水流速度;
(2)若“幾何體”的下方圓柱的底面積為15cm2 , 求“幾何體”上方圓柱體的高和底面積.

查看答案和解析>>

同步練習(xí)冊答案