【題目】

如圖,在△ABC中,點ED、F分別在邊ABBC、CA上,且DE∥CA,DF∥BA.下列四個判斷中,不正確的是( )

A.四邊形AEDF是平行四邊形

B.如果∠BAC=90°,那么四邊形AEDF是矩形

C.如果AD平分∠BAC,那么四邊形AEDF是矩形

D.如果AD⊥BCAB=AC,那么四邊形AEDF是菱形

【答案】

C

【解析】

DE∥CA,DF∥BA,根據(jù)兩組對邊分別平行的四邊形是平行四邊形可得四邊形AEDF是平行四邊形;又有∠BAC=90°,根據(jù)有一角是直角的平行四邊形是矩形,可得四邊形AEDF是矩形.故AB正確;

如果AD平分∠BAC,那么∠EAD=∠FAD,又有DF∥BA,可得∠EAD=∠ADF,∴∠FAD=∠ADF,∴AF=FD,那么根據(jù)鄰邊相等的平行四邊形是菱形,可得四邊形AEDF是菱形,而不一定是矩形.故C錯誤;

如果AD⊥BCAB=AC,那么AD平分∠BAC,同上可得四邊形AEDF是菱形.故D正確.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某校從兩名優(yōu)秀選手中選一名參加全市中小學運動會的男子米跑項目,該校預先對這兩名選手測試了次,測試成績如下表

甲的成績(秒)

乙的成績(秒)

為了衡量這兩名選手米跑的水平,你選擇哪些統(tǒng)計量?請分別求出這些統(tǒng)計量的值.

你認為選派誰比較合適?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,埃航客機失事后,國家主席親自發(fā)電進行慰問,埃及政府出動了多艘艦船和飛機進行搜救,其中一艘潛艇在海面下米的點處測得俯角為的前下方海底有黑匣子信號發(fā)出,繼續(xù)沿原方向直線航行米后到達點,在處測得俯角為的前下方海底有黑匣子信號發(fā)出,求海底黑匣子點距離海面的深度(結果保留根號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC在方格紙中

(1)請在方格紙上建立平面直角坐標系,使A(2,3),C(6,2),并求出B點坐標;

(2)以原點O為位似中心,相似比為2,在第一象限內將ABC放大,畫出放大后的圖形ABC;

(3)計算ABC的面積S.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線軸的交點為,與軸的交點分別為,,且,直線軸,在軸上有一動點過點作平行于軸的直線與拋物線、直線的交點分別為

求拋物線的解析式;

時,求面積的最大值;

時,是否存在點,使以、、為頂點的三角形與相似?若存在,求出此時的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在函數(shù)y1=(x<0)和y2=(x>0)的圖象上,分別有A、B兩點,若ABx軸,交y軸于點C,且OAOB,SAOC=,SBOC=,則線段AB的長度=__

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示的楊輝三角告訴了我們二項式乘方展開式的系數(shù)規(guī)律,如:第三行的三個數(shù)(12、1)恰好對應著(a+b2的展開式a2+2ab+b2的系數(shù);第四行的四個數(shù)恰好對應著(a+b3a3+3a2b+3ab2+b3的系數(shù),根據(jù)數(shù)表中前五行的數(shù)字所反映的規(guī)律,回答:

1)圖中第六行括號里的數(shù)字分別是   ;(請按從左到右的順序填寫)

2)(a+b4   ;

3)利用上面的規(guī)律計算求值:(43+6×2+1

4)若(2x12018a1x2018+a2x2017+a3x2016+……+a2017x2+a2018x+a2019,求a1+a2+a3+……+a2017+a2018的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖(1),已知拋物線E:y=ax2+bx+cx軸交于A,B(3,0)兩點(AB的左側),與y軸交于點C(0,3),對稱軸為直線x=1.

(1)填空:a=   ,b=   ,c=   ;

(2)將拋物線E向下平移d個單位長度,使平移后所得拋物線的頂點落在OBC內(包括OBC的邊界),求d的取值范圍;

(3)如圖(2),設點P是拋物線E上任意一點,點H在直線x=﹣3上,PBH能否成為以點P為直角頂點的等腰直角三角形?若能,請求出符合條件的點P的坐標;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,∠C=90°AC=6,AB=10,點D是邊BC上一點.若沿ADACD翻折,點C剛好落在AB邊上點E處,則AD= _______.

查看答案和解析>>

同步練習冊答案