【題目】如圖,在中,點邊上一個動點,過點作直線,設(shè)的平分線于點,交的外角平分線于點


1)探究的數(shù)量關(guān)系并加以證明;
2)當(dāng)點運動到上的什么位置時,四邊形是矩形,請說明理由;
3)在(2)的基礎(chǔ)上,滿足什么條件時,四邊形是正方形?為什么?

【答案】1OE=OF,理由見解析;(2)當(dāng)點O運動到AC的中點時,四邊形AECF是矩形.理由見解析;(3)當(dāng)點O運動到AC的中點時,且△ABC滿足∠ACB為直角的直角三角形時,四邊形AECF是正方形.理由見解析;

【解析】

1)由平行線的性質(zhì)和角平分線定義得出∠OEC=OCE,∠OFC=OCF,根據(jù)等角對等邊得出OE=OCOF=OC,即可得出結(jié)論;
2)由(1)得出的OE=OC=OF,點O運動到AC的中點時,則由OE=OC=OF=OA,證出四邊形AECF是平行四邊形,再證出∠ECF=90°即可;
3)由已知和(2)得到的結(jié)論,點O運動到AC的中點時,且ABC滿足∠ACB為直角的直角三角形時,則推出四邊形AECF是矩形且對角線垂直,得出四邊形AECF是正方形.

1OE=OF,理由如下:
MNBC,
∴∠OEC=BCE,∠OFC=DCF,
CE平分∠BCA,CF平分∠ACD
∴∠OCE=BCE,∠OCF=DCF
∴∠OCE=OEC,∠OCF=OFC,
OE=OC,OF=OC,
OE=OF
2)解:當(dāng)點O運動到AC的中點時,四邊形AECF是矩形.
∵當(dāng)點O運動到AC的中點時,AO=CO,
EO=FO
∴四邊形AECF為平行四邊形,
CE為∠ACB的平分線,CF為∠ACD的平分線,
∴∠BCE=ACE,∠ACF=DCF,
∴∠BCE+ACE+ACF+DCF=2(∠ACE+ACF=180°,
即∠ECF=90°,
∴四邊形AECF是矩形;
3)解:當(dāng)點O運動到AC的中點時,且△ABC滿足∠ACB為直角的直角三角形時,四邊形AECF是正方形.理由如下:
∵由(2)知,當(dāng)點O運動到AC的中點時,四邊形AECF是矩形,
MNBC,
當(dāng)∠ACB=90°,則∠AOF=COE=COF=AOE=90°,
ACEF,
∴四邊形AECF是正方形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若關(guān)于x、y的二元一次方程組的解都為正數(shù).

(1)求的取值范圍;

(2)若上述二元一次方程組的解是一個等腰三角形的一條腰和一條底邊的長,且這個等腰三角形的周長為9,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,圓O的直徑AB13cm,弦AC5cm,ACB的平分線圓OD,則CD長是_______cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某次考試中,某班級的數(shù)學(xué)成績統(tǒng)計圖如圖.下列說法錯誤的是(  )

A. 得分在70~80分之間的人數(shù)最多 B. 該班的總?cè)藬?shù)為40

C. 得分在90~100分之間的人數(shù)最少 D. 及格(≥60分)人數(shù)是26

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了了解學(xué)校圖書館上個月借閱情況,管理老師從學(xué)生對藝術(shù)、經(jīng)濟、科普及生活四類圖書借閱情況進行了統(tǒng)計,并繪制了下列不完整的統(tǒng)計圖,請根據(jù)圖中信息解答下列問題:

(1)上個月借閱圖書的學(xué)生有多少人?扇形統(tǒng)計圖中藝術(shù)部分的圓心角度數(shù)是多少?

(2)把條形統(tǒng)計圖補充完整;

(3)從借閱情況分析,如果要添置這四類圖書300冊,請你估算科普類圖書應(yīng)添置多少冊合適?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,ADBC,CEAB,垂足分別為D、E,AD、CE交于點H,請你添加一個適當(dāng)?shù)臈l件:_____,使AEH≌△CEB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某大學(xué)計劃為新生配備如圖1所示的折疊凳.圖2是折疊凳撐開后的側(cè)面示意圖(木條等材料寬度忽略不計),其中凳腿ABCD的長相等,O是它們的中點.為了使折疊凳坐著舒適,廠家將撐開后的折疊凳寬度AD設(shè)計為30 cm,由以上信息能求出CB的長度嗎?請你說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將邊長為6cm的正方形ABCD折疊,使點D落在AB邊的中點E處,折痕為FH,點C落在Q處,EQBC交于點G,則△EBG的周長是 cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2020年新型冠狀病毒肺炎疫情肆虐,紅星社區(qū)為了提高社區(qū)居民的身體素質(zhì),鼓勵居民在家鍛煉,特采購了一批跳繩免費發(fā)放,已知2根幸福牌跳繩和1根平安牌跳繩共需31元,2根平安牌跳繩和3根幸福牌跳繩共需54元.

1)求幸福牌跳繩和平安牌跳繩的單價;

2)已知該社區(qū)需要采購兩種品牌的跳繩共60根,且平安牌跳繩的數(shù)量不少于幸福牌跳繩數(shù)量的2倍,請設(shè)計出最省錢的購買方案,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案