【題目】碼頭工人每天往一艘輪船上裝載貨物,平均每天裝載速度y(噸/元)與裝完貨物所需時(shí)間x(天)之間是反比例函數(shù)關(guān)系,其圖象如圖所示.

(1)求這個(gè)反比例函數(shù)的表達(dá)式;

(2)由于緊急情況,要求船上的貨物不超過(guò)5天卸貨完畢,那么平均每天至少要卸貨多少噸?

(3)若碼頭原有工人10名,且每名工人每天的裝卸量相同,裝載完畢恰好用了8天時(shí)間,在(2)的條件下,至少需要增加多少名工人才能完成任務(wù)?

【答案】(1);(2) 80噸貨物;(3)6.

【解析】

(1)根據(jù)題意即可知裝載速度y(噸/天)與裝完貨物所需時(shí)間x(天)之間是反比例函數(shù)關(guān)系,則可求得答案;
(2)由x=5,代入函數(shù)解析式即可求得y的值,即求得平均每天至少要卸的貨物;
(3)由10名工人,每天一共可卸貨50噸,即可得出平均每人卸貨的噸數(shù),即可求得答案.

解:(1)設(shè)yx之間的函數(shù)表達(dá)式為y=,

根據(jù)題意得:50=,

解得k=400

yx之間的函數(shù)表達(dá)式為y=;

2)∵x=5,∴y=400÷5=80,

解得:y=80;

答:平均每天至少要卸80噸貨物;

3)∵每人一天可卸貨:50÷10=5(噸),

80÷5=16(人),1610=6(人).

答:碼頭至少需要再增加6名工人才能按時(shí)完成任務(wù).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,AD是角平分錢,點(diǎn)E在AC上,且EAD=ADE.

1求證:DCE∽△BCA;

2若AB=3,AC=4.求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四邊形中,,分別是、邊上的點(diǎn),交于點(diǎn)

1)如圖1,若四邊形是正方形,且,求證:;

2)如圖2,若四邊形是菱形,試探究當(dāng)滿足什么關(guān)系,使得

3)如圖3,,,,試判斷的數(shù)量關(guān)系,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】寧波某公司經(jīng)銷一種綠茶,每千克成本為元.市場(chǎng)調(diào)查發(fā)現(xiàn),在一段時(shí)間內(nèi),銷售量(千克)隨銷售單價(jià)(元/千克)的變化而變化,具體關(guān)系式為:.設(shè)這種綠茶在這段時(shí)間內(nèi)的銷售利潤(rùn)為(元),解答下列問(wèn)題:

(1)求的關(guān)系式;

(2)當(dāng)銷售單價(jià)取何值時(shí),銷售利潤(rùn)的值最大,最大值為多少?

(3)如果物價(jià)部門規(guī)定這種綠茶的銷售單價(jià)不得高于元/千克,公司想要在這段時(shí)間內(nèi)獲得元的銷售利潤(rùn),銷售單價(jià)應(yīng)定為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知的半徑為,,的兩條弦,,,,則弦之間的距離是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】5個(gè)同樣大小的正方形紙片擺放成“十”字型,按圖1所示的方法分割后可拼接成一個(gè)新的正方形.按照此種做法解決下列問(wèn)題:

15個(gè)同樣大小的矩形紙片擺放成圖2形式,請(qǐng)將其分割并拼接成一個(gè)平行四邊形.要求:在圖2中畫出并指明拼接成的平行四邊形(畫出一個(gè)符合條件的平行四邊形即可);

2)如圖3,在面積為1的平行四邊形中,點(diǎn)分別是邊的中點(diǎn),分別連結(jié)得到一個(gè)新的平四邊形.則平行四邊形的面積為___________(在圖3中畫圖說(shuō)明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,矩形中,,的垂直平分線分別交于點(diǎn),垂足為

1)如圖1,連接,求證:四邊形為菱形;

2)如圖2,動(dòng)點(diǎn)分別從兩點(diǎn)同時(shí)出發(fā),沿各邊勻速運(yùn)動(dòng)一周,即點(diǎn)停止,點(diǎn)停止.在運(yùn)動(dòng)過(guò)程中,

①已知點(diǎn)的速度為每秒,點(diǎn)的速度為每秒,運(yùn)動(dòng)時(shí)間為秒,當(dāng)四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形時(shí),則____________

②若點(diǎn)的運(yùn)動(dòng)路程分別為 (單位:),已知四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形,則滿足的數(shù)量關(guān)系式為____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問(wèn)題情境:在中,,點(diǎn)的中點(diǎn),以為角的頂點(diǎn)作

感知易證:(1)如圖1,當(dāng)射線經(jīng)過(guò)點(diǎn)時(shí),交邊于點(diǎn).從圖1中的位置開(kāi)始,繞點(diǎn)按逆時(shí)針?lè)较蛐D(zhuǎn),使射線、始終分別交邊,于點(diǎn),如圖2所示,易證,則有

操作探究:(2)如圖2,是否相似,若相似,請(qǐng)證明;若不相似,請(qǐng)說(shuō)明理由;

拓展應(yīng)用:(3)若,直接寫出當(dāng)(2)中的旋轉(zhuǎn)角為多少度時(shí),相似.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB為⊙O的直徑,CEO上的兩點(diǎn),若AC平分∠EABCDAE于點(diǎn)D

(1)求證:DC是⊙O切線;

(2)若AO=6,DC=3,求DE的長(zhǎng);

(3)過(guò)點(diǎn)CCFABF,如圖2,若ADOA=1.5,AC=3,求圖中陰影部分面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案