【題目】已知的半徑為,,是的兩條弦,,,,則弦和之間的距離是__________.
【答案】2或14
【解析】分兩種情況進行討論:①弦AB和CD在圓心同側(cè);②弦AB和CD在圓心異側(cè);作出半徑和弦心距,利用勾股定理和垂徑定理求解即可.
①當弦AB和CD在圓心同側(cè)時,如圖,
∵AB=16cm,CD=12cm,
∴AE=8cm,CF=6cm,
∵OA=OC=10cm,
∴EO=6cm,OF=8cm,
∴EF=OF-OE=2cm;
②當弦AB和CD在圓心異側(cè)時,如圖,
∵AB=16cm,CD=12cm,
∴AF=8cm,CE=6cm,
∵OA=OC=10cm,
∴OF=6cm,OE=8cm,
∴EF=OF+OE=14cm.
∴AB與CD之間的距離為14cm或2cm.
故答案為:2或14.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC的面積是2平方厘米,△BCD 的面積是3平方厘米,△CDE的面積是3平方厘米,△DEF 的面積是4平方厘米,△EFG的面積是3平方厘米,△FGH的面積是5平方厘米,那么,△EFH的面積是______平方厘米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=5,∠B=∠C,BC=8,點D從B點出發(fā)沿線段BC向C運動(D不與B、C重合),點E從點C出發(fā)沿線段CA向A運動(E不與A、C重合),它們以相同的速度同時運動,連結(jié)AD、DE.若要使△ABD≌△DCE,①請給出確定D、E兩點位置的方法(如指明CD長度等),并說明理由;②此時∠ADE與∠C大小關(guān)系怎樣?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠生產(chǎn)的件新產(chǎn)品,需要精加工后才能投放市場.現(xiàn)把精加工新產(chǎn)品的任務(wù)分給甲、乙兩人,甲加工新產(chǎn)品的數(shù)量要比乙多.
(1)求甲、乙兩人各需加工多少件新產(chǎn)品;
(2)已知乙比甲平均每天少加工件新產(chǎn)品,用時比甲多用天時間.求甲平均每天加工多少件新產(chǎn)品.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點是邊長為的正方形對角線上一個動點(與不重合),以為圓心,長為半徑畫圓弧,交線段于點,聯(lián)結(jié),與交于點.設(shè)的長為,的面積為.
(1)判斷的形狀,并說明理由;
(2)求與之間的函數(shù)關(guān)系式,并寫出定義域;
(3)當四邊形是梯形時,求出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)已知: ,求的值為_____;
(2)當式子有最大值時,最大值是 .
(3)材料:在學(xué)習(xí)絕對值時,我們知道了絕對值的幾何含義,如|5-3|表示5、3在數(shù)軸上對應(yīng)的兩點之間的距離:|5+3|=|5-(-3)|,所以|5+3|表示5、-3在數(shù)軸上對應(yīng)的兩點之間的距離:那么的最小值是
(4)求的最小值以及取最小值時的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于的一元二次方程.
(1)試證明:無論取何值此方程總有兩個實數(shù)根;
(2)若原方程的兩根,滿足,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD平分∠BAC交BC于點D,點M,N分別是AD和AB上的動點,當S△ABC=12,AC=8時,BM+MN的最小值等于_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某校八年級150名女生的身高情況,從中隨機抽取10名女生,測得身高并繪制如下條形統(tǒng)計圖.
(1)求出這10名女生的身高的中位數(shù)和眾數(shù);
(2)依據(jù)樣本估計該校八年級全體女生的平均身高;
(3)請你根據(jù)這個樣本,在該校八年級中,設(shè)計一個挑選50名女生組成方隊的方案(要求選中女生的身高盡可能接近).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com