【題目】端午節(jié)期間,某品牌粽子經(jīng)銷商銷售甲、乙兩種不同味道的粽子,已知一個(gè)甲種粽子和一個(gè)乙種粽子的進(jìn)價(jià)之和為10元,每個(gè)甲種粽子的利潤是4元,每個(gè)乙種粽子的售價(jià)比其進(jìn)價(jià)的2倍少1元,小王同學(xué)買4個(gè)甲種粽子和3個(gè)乙種粽子一共用了61元

1甲、乙兩種粽子的進(jìn)價(jià)分別是多少元?

21的前提下,經(jīng)銷商統(tǒng)計(jì)發(fā)現(xiàn):平均每天可售出甲種粽子200個(gè)和乙種粽子150個(gè)如果將兩種粽子的售價(jià)各提高1元,則每天將少售出50個(gè)甲種粽子和40個(gè)乙種粽子為使每天獲取的利潤更多,經(jīng)銷商決定把兩種粽子的價(jià)格都提高x元在不考慮其他因素的條件下,當(dāng)x為多少元時(shí),才能使該經(jīng)銷商每天銷售甲、乙兩種粽子獲取的利潤為1190元?

【答案】1甲種粽子的進(jìn)價(jià)是6元/個(gè),乙種粽子的進(jìn)價(jià)是4元/個(gè)21元

【解析】

試題分析:1設(shè)甲種粽子的進(jìn)價(jià)是x元/個(gè),乙種粽子的進(jìn)價(jià)是y元/個(gè),根據(jù)等量關(guān)系:一個(gè)甲種粽子和一個(gè)乙種粽子的進(jìn)價(jià)之和為10元,小王同學(xué)買4個(gè)甲種粽子和3個(gè)乙種粽子一共用了61元,列出方程組即可求解;

2根據(jù)每天銷售甲、乙兩種粽子獲取的利潤為1190元,列出方程即可求解

試題解析:1設(shè)甲種粽子的進(jìn)價(jià)是x元/個(gè),乙種粽子的進(jìn)價(jià)是y元/個(gè),則

,

解得

故甲種粽子的進(jìn)價(jià)是6元/個(gè),乙種粽子的進(jìn)價(jià)是4元/個(gè)

2依題意有4+x+3+x)(150-40x=1190,

3x2-x-2=0,

解得x1=1,x2=-

x>0,

x=1

答:當(dāng)x為1元時(shí),才能使該經(jīng)銷商每天銷售甲、乙兩種粽子獲取的利潤為1190元

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線y=ax2+(a+2)x+2(a≠0)與x軸交于點(diǎn)A(4,0),與y軸交于點(diǎn)B,在x軸上有一動(dòng)點(diǎn)P(m,0)(0<m<4),過點(diǎn)Px軸的垂線交直線AB于點(diǎn)N,交拋物線于點(diǎn)M.

(1)求a的值;

(2)若PN:MN=1:3,求m的值;

(3)如圖2,在(2)的條件下,設(shè)動(dòng)點(diǎn)P對(duì)應(yīng)的位置是P1,將線段OP1繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)得到OP2,旋轉(zhuǎn)角為α(0°<α<90°),連接AP2、BP2,求AP2+ BP2的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是由射線組成的平面圖形,則++++=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們定義:有一組對(duì)角相等而另一組對(duì)角不相等的凸四邊形叫做等對(duì)角四邊形.請(qǐng)解決下列問題:

(1)已知:如圖1,四邊形ABCD是等對(duì)角四邊形,∠A≠C,A=70°,B=75°,則∠C=   °,D=   °

(2)在探究等對(duì)角四邊形性質(zhì)時(shí):

小紅畫了一個(gè)如圖2所示的等對(duì)角四邊形ABCD,其中,∠ABC=ADC,AB=AD,此時(shí)她發(fā)現(xiàn)CB=CD成立,請(qǐng)你證明該結(jié)論;

(3)圖①、圖②均為4×4的正方形網(wǎng)格,線段AB、BC的端點(diǎn)均在網(wǎng)點(diǎn)上.按要求在圖①、圖②中以ABBC為邊各畫一個(gè)等對(duì)角四邊形ABCD.

要求:四邊形ABCD的頂點(diǎn)D在格點(diǎn)上,所畫的兩個(gè)四邊形不全等.

(4)已知:在等對(duì)角四邊形ABCD中,∠DAB=60°,ABC=90°,AB=5,AD=4,求對(duì)角線AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AC=9AB=12,BC=15,PBC邊上一動(dòng)點(diǎn),PGAC于點(diǎn)G,PHAB于點(diǎn)H

(1)求證:四邊形AGPH是矩形;

(2)在點(diǎn)P的運(yùn)動(dòng)過程中,GH的長度是否存在最小值?若存在,請(qǐng)求出最小值,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市舉行傳承好家風(fēng)征文比賽,已知每篇參賽征文成績記m分(60≤m≤100),組委會(huì)從1000篇征文中隨機(jī)抽取了部分參賽征文,統(tǒng)計(jì)了他們的成績,并繪制了如下不完整的兩幅統(tǒng)計(jì)圖表.

請(qǐng)根據(jù)以上信息,解決下列問題:

(1)征文比賽成績頻數(shù)分布表中c的值是________;

(2)補(bǔ)全征文比賽成績頻數(shù)分布直方圖;

(3)若80分以上(含80分)的征文將被評(píng)為一等獎(jiǎng),試估計(jì)全市獲得一等獎(jiǎng)?wù)魑牡钠獢?shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖1,將矩形折疊,使落在對(duì)角線上,折痕為,點(diǎn)落在點(diǎn) 處,若,則 ;

(2)小麗手中有一張矩形紙片,,.她準(zhǔn)備按如下兩種方式進(jìn)行折疊:

①如圖2,點(diǎn)在這張矩形紙片的邊上,將紙片折疊,使點(diǎn)落在邊上的點(diǎn)處,折痕為,若,求的長;

②如圖3,點(diǎn)在這張矩形紙片的邊上,將紙片折疊,使落在射線上,折痕為,點(diǎn),分別落在,處,若,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙二人同時(shí)從學(xué)校出發(fā),沿同一方向勻速行走,后,甲加快速度繼續(xù)勻速行走(加速的時(shí)間忽略不計(jì)),乙始終勻速行走,兩人都走了.兩人在行走過程中得到如下表所示的信息:

離開學(xué)校的時(shí)間

甲離學(xué)校的距離

乙離學(xué)校的距離

1)根據(jù)題意,甲出發(fā)時(shí)的速度為_______,乙的速度為______;

2)求表中的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:頂點(diǎn)、開口大小相同,開口方向相反的兩個(gè)二次函數(shù)互為“反簇二次函數(shù)”.

1)已知二次函數(shù)y=﹣(x﹣2)23,則它的“反簇二次函數(shù)”是__________________;

2)已知關(guān)于x的二次函數(shù)y1=2x22mxm+1y2=ax2+bxc,其中y1的圖像經(jīng)過點(diǎn)(1,1.若y1y2y1互為“反簇二次函數(shù)”.求函數(shù)y2的表達(dá)式,并直接寫出當(dāng)0x3時(shí),y2的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案