【題目】(1)如圖1,將矩形折疊,使落在對角線上,折痕為,點落在點 處,若,則 ;
(2)小麗手中有一張矩形紙片,,.她準備按如下兩種方式進行折疊:
①如圖2,點在這張矩形紙片的邊上,將紙片折疊,使點落在邊上的點處,折痕為,若,求的長;
②如圖3,點在這張矩形紙片的邊上,將紙片折疊,使落在射線上,折痕為,點,分別落在,處,若,求的長.
【答案】(1)12;(2)①AG=;②
【解析】
(1)由折疊的性質可得∠BAE=∠CAE=12°;
(2)①過點F作FH⊥AB于H,可證四邊形DFHA是矩形,可得AD=FH=4,由勾股定理可求D1H=3,由勾股定理可求AG的長;
②首先證明CK=CH,利用勾股定理求出BH,可得AH,再利用翻折不變性,可知AH=A1H,由此即可解決問題.
解:(1)∵∠DAC=66°,
∴∠CAB=24°
∵將矩形ABCD折疊,使AB落在對角線AC上,
∴∠BAE=∠CAE=12°
故答案為:12;
(2)如圖2,過點F作FH⊥AB于H,
∵∠D=∠A=90°,FH⊥AB
∴四邊形DFHA是矩形
∴AD=FH=4,
∵將紙片ABCD折疊
∴DF=D1F=5,DG=D1G,
∴D1H=,
∴AD1=2
∵AG2+D1A2=D1G2,
∴AG2+4=(4AG)2,
∴AG=;
②∵DK=,CD=9,
∴CK=9=,
∵四邊形ABCD是矩形,
∴DC∥AB,
∴∠CKH=∠AHK,
由翻折不變性可知,∠AHK=∠CHK,
∴∠CKH=∠CHK,
∴CK=CH=,
∵CB=AD=4,∠B=90°,
∴在Rt△CDF中,BH=,
∴AH=ABBH=,
由翻折不變性可知,AH=A1H=,
∴A1C=CHA1H=3.
科目:初中數學 來源: 題型:
【題目】某體育用品商店購進了足球和排球共20個,一共花了1360元,進價和售價如表:
足球 | 排球 | |
進價(元/個) | 80 | 50 |
售價(元/個) | 95 | 60 |
(l)購進足球和排球各多少個?
(2)全部銷售完后商店共獲利潤多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】2017年5月14日至15日,“一帶一路”國際合作高峰論壇在北京舉行,本屆論壇期間,中國同30多個國家簽署經貿合作協議,某廠準備生產甲、乙兩種商品共8萬件銷往“一帶一路”沿線國家和地區(qū),已知2件甲種商品與3件乙種商品的銷售收入相同,3件甲種商品比2件乙種商品的銷售收入多1500元.
(1)甲種商品與乙種商品的銷售單價各多少元?
(2)若甲、乙兩種商品的銷售總收入不低于5400萬元,則至少銷售甲種商品多少萬件?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知在Rt△ABC中,∠ACB=90°,AC > BC,CD是Rt△ABC的高,E是AC的中點,ED的延長線與CB的延長線相交于點F.
(1)求證:DF是BF和CF的比例中項;
(2)在AB上取一點G,如果AE·AC=AG·AD,求證:EG·CF=ED·DF.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知拋物線(為任意實數)經過下圖中兩點M(1,-2)、N(,0),其中M為拋物線的頂點,N為定點.下列結論:
①若方程的兩根為, (),則, ;
②當時,函數值隨自變量的減小而減。
③, , .
④垂直于軸的直線與拋物線交于C、D兩點,其C、D兩點的橫坐標分別為、,則=2 .
其中正確的是( )
A. ①② B. ①④ C. ②③ D. ②④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知,其中a,b滿足
(1)填空:a= ,b= ;
(2)如果在第三象限內有一點C(-2,m),請用含m的式子表示△ABC的面積;
(3)在⑵條件下,當時,在y軸上有一點P,使得△BMP的面積與△ABM的面積相等,請求出點P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,請在下列四個關系中,選出兩個恰當的關系作為條件,推出四邊形ABCD是平行四邊形,并予以證明.(寫出一種即可)
關系:①AD∥BC,②AB=CD,③∠A=∠C,④∠B+∠C=180°.
已知:在四邊形ABCD中, , ;
求證:四邊形ABCD是平行四邊形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1.直線AD∥EF,點B,C分別在EF和AD上,∠A=∠ABC,BD平分∠CBF.
(1)求證:AB⊥BD;
(2)如圖2,BG⊥AD于點G,求證:∠ACB=2∠ABG;
(3)在(2)的條件下,如圖3,CH平分∠ACB交BG于點H,設∠ABG=α,請直接寫出∠BHC的度數.(用含α的式子表示)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com