【題目】如圖1,拋物線y=ax2+(a+2)x+2(a≠0)與x軸交于點(diǎn)A(4,0),與y軸交于點(diǎn)B,在x軸上有一動(dòng)點(diǎn)P(m,0)(0<m<4),過(guò)點(diǎn)P作x軸的垂線交直線AB于點(diǎn)N,交拋物線于點(diǎn)M.
(1)求a的值;
(2)若PN:MN=1:3,求m的值;
(3)如圖2,在(2)的條件下,設(shè)動(dòng)點(diǎn)P對(duì)應(yīng)的位置是P1,將線段OP1繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)得到OP2,旋轉(zhuǎn)角為α(0°<α<90°),連接AP2、BP2,求AP2+ BP2的最小值.
【答案】(1) (2) 3 (3)
【解析】分析:(1)把A點(diǎn)坐標(biāo)代入可得到關(guān)于a的方程,可求得a的值;
(2)由△OAB∽△PAN可用m表示出PN,且可表示出PM,由條件可得到關(guān)于m的方程,則可求得m的值;
(3)在y軸上取一點(diǎn)Q,使,可證得△P2OB∽△QOP2,則可求得Q點(diǎn)坐標(biāo),則可把AP2+BP2化為AP2+QP2,利用三角形三邊關(guān)系可知當(dāng)A、P2、Q三點(diǎn)在一條線上時(shí)有最小值,則可求得答案.
詳解:(1)∵A(4,0)在拋物線上,
∴0=16a+4(a+2)+2,解得a=-;
(2)由(1)可知拋物線解析式為y=-x2+x+2,令x=0可得y=2,
∴OB=2,
∵OP=m,
∴AP=4-m,
∵PM⊥x軸,
∴△OAB∽△PAN,
∴,即,
∴PN=(4-m),
∵M在拋物線上,
∴PM=-m2+m+2,
∵PN:MN=1:3,
∴PN:PM=1:4,
∴-m2+m+2=4×(4-m),
解得m=3或m=4(舍去);
(3)在y軸上取一點(diǎn)Q,使,如圖,
由(2)可知P1(3,0),且OB=2,
∴,且∠P2OB=∠QOP2,
∴△P2OB∽△QOP2,
∴,
∴當(dāng)Q(0,)時(shí)QP2=BP2,
∴AP2+BP2=AP2+QP2≥AQ,
∴當(dāng)A、P2、Q三點(diǎn)在一條線上時(shí),AP2+QP2有最小值,
∵A(4,0),Q(0,),
∴AQ=,即AP2+BP2的最小值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】李老師準(zhǔn)備購(gòu)買(mǎi)一套小戶(hù)型商品房,他去售樓處了解情況得知.該戶(hù)型商品房的單價(jià)是5000元/,面積如圖所示(單位:m,衛(wèi)生間的寬未定,設(shè)寬為xm),售房部為李老師提供了以下兩種優(yōu)惠方案:
方案一:整套房的單價(jià)為5000元/,其中廚房可免費(fèi)贈(zèng)送一半的面積;
方案二:整套房按原銷(xiāo)售總金額的9.5折出售.
(1)用含x的代數(shù)式表示該戶(hù)型商品房的面積及方案一、方案二中購(gòu)買(mǎi)一套該戶(hù)型商品房的總金額;
(2)當(dāng)x=2時(shí),通過(guò)計(jì)算說(shuō)明哪種方案更優(yōu)惠??jī)?yōu)惠多少元?
(3)李老師因現(xiàn)金不夠,于2019年10月在建行借了18萬(wàn)元住房貸款,貸款期限為10年,從開(kāi)始貸款的下一個(gè)月起逐月償還,貸款月利率是0.5%,每月應(yīng)還的貸款本金數(shù)額為1500元(每月還款數(shù)額=每月應(yīng)還的貸款本金數(shù)額+月利息,月利息=上月所剩貸款本金數(shù)額×月利率),假設(shè)貸款月利率不變,請(qǐng)求出李老師在借款后第n(,n是正整數(shù))個(gè)月的還款數(shù)額.(用n的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等腰直角△ABC中,∠C=90°,D為BC的中點(diǎn),將△ABC折疊,使點(diǎn)A與點(diǎn)D重合,EF為折痕,則sin∠BED的值是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在Rt△ACB中,∠ACB=90°,點(diǎn)D是AB的中點(diǎn),點(diǎn)E是CD的中點(diǎn),過(guò)點(diǎn)C作CF∥AB叫AE的延長(zhǎng)線于點(diǎn)F.
(1)求證:△ADE≌△FCE;
(2)若∠DCF=120°,DE=2,求BC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,兩點(diǎn)在數(shù)軸上,點(diǎn)對(duì)應(yīng)的數(shù)為-15,,兩點(diǎn)分別從點(diǎn)點(diǎn)同時(shí)出發(fā),沿?cái)?shù)軸正方向勻速運(yùn)動(dòng),速度分別為每秒3個(gè)單位長(zhǎng)度和每秒2個(gè)單位長(zhǎng)度.
(1)數(shù)軸上點(diǎn)對(duì)應(yīng)的數(shù)是
(2)經(jīng)過(guò)多少秒時(shí),兩點(diǎn)分別到原點(diǎn)的距離相等?
(3)當(dāng)兩點(diǎn)分別到點(diǎn)的距離相等時(shí),在數(shù)軸上點(diǎn)對(duì)應(yīng)的數(shù)是
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】珠江流域某江段江水流向經(jīng)過(guò)B、C、D三點(diǎn)拐彎后與原來(lái)相同,如圖,若∠ABC=120°,∠BCD=80°,則∠CDE=__________度.
(第22題)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,與兩個(gè)角的角平分線相交于點(diǎn).
(1)如圖1,若,求的度數(shù).
(2)如圖2,若,,試寫(xiě)出與之間的數(shù)量關(guān)系并證明你的結(jié)論.
(3)若,,,請(qǐng)直接用含有,的代數(shù)式表示出.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D為AB邊上一點(diǎn).
(1)求證:△ACE≌△BCD;
(2)若AD=5,BD=12,求DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】端午節(jié)期間,某品牌粽子經(jīng)銷(xiāo)商銷(xiāo)售甲、乙兩種不同味道的粽子,已知一個(gè)甲種粽子和一個(gè)乙種粽子的進(jìn)價(jià)之和為10元,每個(gè)甲種粽子的利潤(rùn)是4元,每個(gè)乙種粽子的售價(jià)比其進(jìn)價(jià)的2倍少1元,小王同學(xué)買(mǎi)4個(gè)甲種粽子和3個(gè)乙種粽子一共用了61元.
(1)甲、乙兩種粽子的進(jìn)價(jià)分別是多少元?
(2)在(1)的前提下,經(jīng)銷(xiāo)商統(tǒng)計(jì)發(fā)現(xiàn):平均每天可售出甲種粽子200個(gè)和乙種粽子150個(gè).如果將兩種粽子的售價(jià)各提高1元,則每天將少售出50個(gè)甲種粽子和40個(gè)乙種粽子.為使每天獲取的利潤(rùn)更多,經(jīng)銷(xiāo)商決定把兩種粽子的價(jià)格都提高x元.在不考慮其他因素的條件下,當(dāng)x為多少元時(shí),才能使該經(jīng)銷(xiāo)商每天銷(xiāo)售甲、乙兩種粽子獲取的利潤(rùn)為1190元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com