【題目】如圖,E、F分別是 四邊形ABCD的邊AB、CD上的點,AF與DE相交于點P,BF與CE相交于點Q,記S1=S△APD,S2=S△BQC,四邊形EQFP的面積為S.
(1)若四邊形ABCD為平行四邊形,如圖1,求證:S=S1+S2;
(2)若四邊形ABCD為一般凸多邊形,AB∥CD,如圖2,求證:S=S1+S2.
【答案】(1)證明見解析 (2)證明見解析
【解析】
(1)連接EF兩點,由三角形的面積公式我們可以推出S△EFC=S△BCF,S△EFD=S△ADF,所以S△EFG=S△BCQ,S△EFP=S△ADP,因此可以推出陰影部分的面積就是S△APD+S△BQC.
(2)連接EF,證明方法類似;
證明:(1)連接E、F兩點,
∵四邊形ABCD是平行四邊形,
∴AB∥CD,
∴△EFC的FC邊上的高與△BCF的FC邊上的高相等,
∴S△EFC=S△BCF,
∴S△EFQ=S△BCQ,
同理:S△EFD=S△ADF,
∴S△EFP=S△ADP,
∴S=S1+S2.
(2)連接EF.
∵AB∥CD,
∴△EFC的FC邊上的高與△BCF的FC邊上的高相等,
∴S△EFC=S△BCF,
∴S△EFQ=S△BCQ,
同理:S△EFD=S△ADF,
∴S△EFP=S△ADP,
∴S=S1+S2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】梧桐山是深圳最高的山峰,某校綜合實踐活動小組要測量“主山峰”的高度,先在梧桐山對面廣場的A處測得“峰頂”C的仰角為45o , 此時,他們剛好與峰底D在同一水平線上。然后沿著坡度為30o的斜坡正對著“主山峰”前行700米,到達(dá)B處,再測得“峰頂”C的仰角為60o , 如圖,根據(jù)以上條件求出“主山峰”的高度?(測角儀的高度忽略不計,結(jié)果精確到1米.參考數(shù)據(jù):(1.4,1.7)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=3x與雙曲線y=相交于點A,B,點C的坐標(biāo)是(-4,0),且AO=AC.
(1)求雙曲線的解析式.
(2)已知A、B兩點關(guān)于原點對稱,求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線y=kx(k≠0)經(jīng)過點(12,﹣5),將直線向上平移m(m>0)個單位,若平移后得到的直線與半徑為6的⊙O相交(點O為坐標(biāo)原點),則m的取值范圍為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在梯形ABCD中,AD∥BC,∠B+∠C=90°,AB=5,CD=12,M,N分別為AD,BC的中點,則線段MN=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將45°的∠AOB按下面的方式放置在一把刻度尺上:頂點O與尺下沿的端點重合,OA與尺下沿重合,OB與尺上沿的交點B在尺上的讀數(shù)恰為2cm.若按相同的方式將37°的∠AOC放置在該刻度尺上,則OC與尺上沿的交點C在尺上的讀數(shù)約為 cm.(結(jié)果精確到0.1cm,參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】超速行駛是引發(fā)交通事故的主要原因之一,小明和三位同學(xué)嘗試用自己所學(xué)的知識檢測車速,如圖,觀測點設(shè)在A處,距離大路(BC)為30米,一輛小轎車由西向東勻速行駛,測得此車從B處到C處所用的時間為5秒,∠BAC=60°.
(1)求B、C兩點間的距離.
(2)請判斷此車是否超過了BC路段限速40千米/小時的速度.(參考數(shù)據(jù):≈1.732,≈1.414)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,CD為弦,且CD⊥AB,垂足為H.
(1)若∠BAC=30°,求證:CD平分OB.
(2)若點E為弧ADB的中點,連接0E,CE.求證:CE平分∠OCD.
(3)若⊙O的半徑為4,∠BAC=30°,則圓周上到直線AC距離為3的點有多少個?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下圖中,是木桿和旗桿豎在操場上,其中木桿在陽光下的影子已畫出.
(1)用線段表示這一時刻旗桿在陽光下的影子.
(2)比較旗桿與木桿影子的長短.
(3)圖中是否出現(xiàn)了相似三角形?
(4)為了出現(xiàn)這樣的相似三角形,木桿不可以放在圖中的哪些位置?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com