【題目】如圖①,△ABC是等腰直角三角形,,,四邊形ADEF是正方形,點B、C分別在邊AD、AF上,此時,成立.
(1)當△ABC繞點A逆時針旋轉時,如圖②,成立嗎?若成立,請證明;若不成立,請說明理由;
(2)當△ABC繞點A逆時針旋轉45°時,如圖③,延長DB交CF于點H;
(i)求證:;
(ii)當,時,則線段FC的長為_______.
【答案】(1)BD=CF成立,理由見解析;(2)(i)證明見解析;(ii)2.
【解析】
(l)由旋轉得:AB=AC,∠CAF=∠BAD=α,AD=AF,由SAS證得△ABD≌△ACF,即可得出結論;
(2)(i)由△ABD≌△ACF,得出∠HFN=∠ADN,證得∠HFN+∠HNF=90°,得出∠NHF=90°,即可得出結論;
(ii)由正方形的性質得出AF=AD=+1,∠DAF=90°,AD⊥AF,由等腰直角三角形的性質得出∠ABC=45°,BC=AB=2,由旋轉的性質得:∠BAD=45°=∠ABC,得出BC∥AD,證出BC⊥AF,由等腰三角形的性質得出AP=BP=CP=BC=1,得出PF=AFAP=,由勾股定理即可得出結果.
解:(l)BD=CF成立;
理由如下:
由旋轉得:AB=AC,∠CAF=∠BAD=α,AD=AF,
在△ABD和△ACF中,,
∴△ABD≌△ACF(SAS),
∴BD=CF;
(2)(i)證明:由(1)得,△ABD≌△ACF,
∴∠HFN=∠ADN,
∵∠HNF=∠AND,∠AND+∠ADN=90°,
∴∠HFN+∠HNF=90°,
∴∠NHF=90°,
∴HD⊥HF,即BD⊥CF;
(ii)解:∵四邊形ADEF是正方形,
∴AF=AD=+1,∠DAF=90°,AD⊥AF,
∵△ABC是等腰直角三角形,∠BAC=90°,AB=AC,
∴∠ABC=45°,BC=AB=2,
由旋轉的性質得:∠BAD=45°=∠ABC,
∴BC∥AD,
∴BC⊥AF,
∴AP=BP=CP=BC=1,
∴PF=AFAP=,
∴FC=.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC是邊長為3的等邊三角形,點D是邊BC上的一點,且BD=1,以AD為邊作等邊△ADE,過點E作EF∥BC,交AC于點F,連接BF,則下列結論中①△ABD≌△BCF;②四邊形BDEF是平行四邊形;③S四邊形BDEF=;④S△AEF=.其中正確的有( )
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某班將買一些乒乓球和乒乓球拍,現(xiàn)了解情況如下:甲、乙兩家商店出售兩種同樣品牌的乒乓球和乒乓球拍.乒乓球拍每副定價元,乒乓球每盒定價元,經洽談后,甲店每買一-副球拍贈一盒乒乓球,乙店全部按定價的折優(yōu)惠.該班需買球拍副,乒乓球若干盒(不小于盒).
(1)當購買乒乓球多少盒時,在兩店購買付款一樣?
(2)如果給你元,讓你選擇- -家商店去辦這件事,你打算去哪家商店購買?為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD中,,,,E是邊CD的中點,連接BE并延長與AD的延長線相交于點F.
(1)求證:四邊形BDFC是平行四邊形;
(2)若,求四邊形ABCF的周長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(背景知識)
數(shù)軸是初中數(shù)學的一個重要工具,利用數(shù)軸可以將數(shù)與形完美地結合.研究數(shù)軸我們發(fā)現(xiàn)了許多重要的規(guī)律:若數(shù)軸上點、點表示的數(shù)分別為、,則、兩點之間的距離,線段的中點表示的數(shù)為.
(問題情境)
如圖,數(shù)軸上點表示的數(shù)為,點表示的數(shù)為8,點從點出發(fā),以每秒3個單位長度的速度沿數(shù)軸向右勻速運動,同時點從點出發(fā),以每秒2個單位長度的速度向左勻速運動,設運動時間為秒().
(綜合運用)
(1)填空:
①、兩點之間的距離________,線段的中點表示的數(shù)為__________.
②用含的代數(shù)式表示:秒后,點表示的數(shù)為____________;點表示的數(shù)為___________.
③當_________時,、兩點相遇,相遇點所表示的數(shù)為__________.
(2)當為何值時,.
(3)若點為的中點,點為的中點,點在運動過程中,線段的長度是否發(fā)生變化?若變化,請說明理由;若不變,請求出線段的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在20km越野賽中,甲乙兩選手的行程y(單位:km)隨時間x(單位:h)變化的圖象
如圖所示,根據(jù)圖中提供的信息,有下列說法:
①兩人相遇前,甲的速度小于乙的速度; ②出發(fā)后1小時,兩人行程均為10km;
③出發(fā)后1.5小時,甲的行程比乙多3km; ④甲比乙先到達終點.
其中正確的有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,O是直線AB上一點,OD平分∠BOC,∠COE=90°.若∠AOC=40°.
(1)求∠DOE的度數(shù);
(2)圖中互為余角的角有 .
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com