【題目】如圖,AB、CD為兩個(gè)建筑物,建筑物AB的高度為60m,從建筑物AB的頂部A點(diǎn)測(cè)得建筑物CD的頂部C點(diǎn)的俯角∠EAC為30°,測(cè)得建筑物CD的底部D點(diǎn)的俯角∠EAD為45°.
(1)求兩建筑物兩底部之間的水平距離BD的長(zhǎng)度;
(2)求建筑物CD的高度(結(jié)果保留根號(hào)).
【答案】(1)60米;(2)米.
【解析】
試題分析:(1)根據(jù)平行線的性質(zhì)可以得到:∠BAD=∠ADB=45°,根據(jù)等腰直角三角形的性質(zhì)可以求出BD的長(zhǎng)度;
(2)延長(zhǎng)AE、DC交于點(diǎn)F,可知四邊形ABDF是正方形,根據(jù)tan∠CAF=,求出CF的長(zhǎng)度,再根據(jù)DF的長(zhǎng)度求出CD的高度.
試題解析:(1)根據(jù)題意得BD∥AE,
∴∠ADB=∠EAD=45°.
∵∠ABD=90°,
∴∠BAD=∠ADB=45°.
∴BD=AD=60(米).
∴兩建筑物兩底部之間的水平距離BD的長(zhǎng)度為60米
(2)延長(zhǎng)AE、DC交于點(diǎn)F,
根據(jù)題意可知四邊形ABDF是正方形,
∴AF=BD=DF=60,
在Rt△AFC中,∠FAC=30°,
由tan∠CAF=,
得CF=AFtan∠CAF
=60tan30°
=60×=20.
又∵DF=60,
∴CD=60-20.
∴建筑物CD的高度為(60-20)米.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,△ABC和△ECD都是等腰直角三角形,∠ACD=∠DCE=90°,D為AB邊上一點(diǎn).求證:(1)BD=AE.(2)若線段AD=5,AB=17,求線段ED的長(zhǎng)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校九年級(jí)(1)班40名同學(xué)中,14歲的有1人,15歲的有21人,16歲的有16人,17歲的有2人,則這個(gè)班同學(xué)年齡的中位數(shù)是 歲.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中, ,是的垂直平分線,交于點(diǎn),交于點(diǎn).(1)、若∠BAE=200,求的度數(shù)。(2)、若AB=6,AC=10,求BE的長(zhǎng)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】課前預(yù)習(xí)是學(xué)習(xí)數(shù)學(xué)的重要環(huán)節(jié),為了了解所教班級(jí)學(xué)生完成數(shù)學(xué)課前預(yù)習(xí)的具體情況,王老師對(duì)本班部分學(xué)生進(jìn)行了為期半個(gè)月的跟蹤調(diào)查,他將調(diào)查結(jié)果分為四類,A:很好;B:較好;C:一般;D:較差.并將調(diào)查結(jié)果繪制成以下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖解答下列問題:
(l) 王老師一共調(diào)查了多少名同學(xué)?
(2) C類女生有多少名?D類男生有多少名?并將上面條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3) 為了共同進(jìn)步,王老師想從被調(diào)查的A類和D類學(xué)生中各隨機(jī)選取一位同學(xué)進(jìn)行“一幫一”互助學(xué)習(xí),請(qǐng)用列表法或畫樹形圖的方法求出所選兩位同學(xué)中男同學(xué)不少于1人的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一個(gè)正方體沿著某些棱剪開,展成一個(gè)平面圖形,至少需要剪的棱的條數(shù)是( )
A.5 B.6 C.7 D.8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某車間有16名工人,每人每天可加工甲種零件5個(gè)或乙種零件4個(gè).在這16名工人中,一部分人加工甲種零件,其余的加工乙種零件.已知每加工一個(gè)甲種零件可獲利16元,每加工一個(gè)乙種零件可獲利24元.若此車間一共獲利1 440元,求這一天有幾名工人加工甲種零件.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,平行四邊形ABCD的對(duì)角線相交于點(diǎn)O,點(diǎn)E在邊BC的延長(zhǎng)線上,且OE=OB,聯(lián)結(jié)DE.
(1)求證:DE⊥BE;
(2)如果OE⊥CD,求證:BD CE=CD DE.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com