【題目】在數(shù)軸上,點A表示1,現(xiàn)將點A沿數(shù)軸做如下移動,第一次將點A向左移動2個單位長度到達(dá)點,第二次將點向右移動4個單位長度到達(dá)點,第三次將點向左移動6個單位長度到達(dá)點,....按照這種移動規(guī)律進(jìn)行下去;
(1)第9次移動到點,求點所表示的數(shù);
(2)第n次移動到點,如果點表示的數(shù)是19,求n;
(3)第n次移動到點,如果點與原點的距離是99,求n。
【答案】(1)-9;(2)n=18;(3)n=98或99.
【解析】
根據(jù)題意依次得出點A移動的規(guī)律,當(dāng)點A奇數(shù)次移動時,對應(yīng)表示的數(shù)為負(fù)數(shù),當(dāng)點A偶數(shù)次移動時,對應(yīng)表示的數(shù)為正數(shù),得出對應(yīng)規(guī)律:①當(dāng)n為奇數(shù)時,第n次移動的點表示的數(shù)為:-n,②當(dāng)n為偶數(shù)時,第n次移動的點表示的數(shù)為:n+1,(1)根據(jù)規(guī)律,可判斷n=9時表示的數(shù);(2)根據(jù)表示的數(shù)為正數(shù),所以n為偶數(shù),即可求出n;(3)根據(jù)點An與原點的距離等于99,則點An表示的數(shù)為99或-99,分別代入計算即可.
解:第一次:A1表示:12=1,
第二次:A2表示:1+4=3,
第三次:A3表示:36=3
第四次:A4表示:3+8=5,
…
當(dāng)n為奇數(shù)時,第n次移動的點表示的數(shù)為:n,
當(dāng)n為偶數(shù)時,第n次移動的點表示的數(shù)為:n+1,
(1)第9次移動時,所表示的數(shù)為-9;
(2)∵表示的數(shù)位19,
∴n為偶數(shù),即n+1=19,
∴n=18;
(3)∵點An與原點的距離等于99,
∴點An表示的數(shù)為99或99,
∴n+1=99或n=99,
故n=98或99.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一家商店進(jìn)行裝修,若請甲、乙兩個裝修組同時施工,8天可以完成,需付兩組費用共3520元,若先請甲組單獨做6天,再請乙組單獨做12天可以完成,需付費用3480元,問:
(1)甲,乙兩組工作一天,商店各應(yīng)付多少錢?
(2)已知甲單獨完成需12天,乙單獨完成需24天,單獨請哪個組,商店所需費用最少?
(3)若裝修完后,商店每天可贏利200元,你認(rèn)為如何安排施工更有利于商店?請你幫助商店決策.(可用(1)(2)問的條件及結(jié)論)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察與思考:閱讀下列材料,并解決后面的問題
在銳角△ABC中,∠A、∠B、∠C的對邊分別是a、b、c,過A作AD⊥BC于D(如圖(1)),則,即AD=csinB,AD=bsinC,于是csinB=bsinC,即 ,同理有: ,所以.
即:在一個銳角三角形中,各邊和它所對角的正弦的比相等在銳角三角形中,若已知三個元素(至少有一條邊),運用上述結(jié)論和有關(guān)定理就可以求出其余三個未知元素.
根據(jù)上述材料,完成下列各題.
(1)如圖(2),△ABC中,∠B=45°,∠C=75°,BC=60,則∠A= ;AC= ;
(2)某次巡邏中,如圖(3),我漁政船在C處測得釣魚島A在我漁政船的北偏西30°的方向上,隨后以40海里/時的速度按北偏東30°的方向航行,半小時后到達(dá)B處,此時又測得釣魚島A在的北偏西75°的方向上,求此時漁政船距釣魚島A的距離AB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:
點A、B在數(shù)軸上分別表示實數(shù)a、b,A、B兩點之間的距離表示為|AB|
當(dāng)A、B兩點中有一點在原點時,不妨設(shè)點A在原點(如圖1)|AB|=|OB|=|b|=|a﹣b|;
當(dāng)A、B兩點都不在原點時
①當(dāng)點A、B都在原點的右邊(如圖2)
|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|
②當(dāng)點A、B都在原點的左邊(如圖3)
|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a﹣b|
③當(dāng)點A、B在原點的兩邊(如圖4)
|AB|=|OB|+|OA|=|b|+|a|=﹣b+a=|a﹣b|
回答下列問題:
(1)數(shù)軸上表示1和5的兩點之間的距離是 ,數(shù)軸上表示1和﹣3的兩點之間的距離是 ;
(2)數(shù)軸上若點A表示的數(shù)是x,點B表示的數(shù)是﹣2,則點A和B之間的距離是 ,若|AB|=3,那么x為 ;
(3)當(dāng)x是 時,代數(shù)式|x+2|+|x﹣1|=5;
(4)若點A表示的數(shù)﹣1,點B與點A的距離是10,且點B在點A的右側(cè),動點P、Q同時從A、B出發(fā)沿數(shù)軸正方向運動,點P的速度是每秒3個單位長度,點Q的速度是每秒個單位長度,求運動幾秒后,點Q與點P相距1個單位?(請寫出必要的求解過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】材料一:如圖1,由課本91頁例2畫函數(shù)y=﹣6x與y=﹣6x+5可知,直線y=﹣6x+5可以由直線y=﹣6x向上平移5個單位長度得到由此我們得到正確的結(jié)論一:在直線L1:y=K1x+b1與直線L2:y=K2x+b2中,如果K1=K2 且b1≠b2 ,那么L1∥L2,反過來,也成立.
材料二:如圖2,由課本92頁例3畫函數(shù)y=2x﹣1與y=﹣0.5x+1可知,利用所學(xué)知識一定能證出這兩條直線是互相垂直的.由此我們得到正確的結(jié)論二:在直線L1:y=k1x+b1 與L2:y=k2x+b2 中,如果k1·k2=-1那么L1⊥L2,反過來,也成立
應(yīng)用舉例
已知直線y=﹣x+5與直線y=kx+2互相垂直,則﹣k=﹣1.所以k=6
解決問題
(1)請寫出一條直線解析式______,使它與直線y=x﹣3平行.
(2)如圖3,點A坐標(biāo)為(﹣1,0),點P是直線y=﹣3x+2上一動點,當(dāng)點P運動到何位置時,線段PA的長度最小?并求出此時點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為迎軍運會,武漢市對城區(qū)主干道進(jìn)行綠化,計劃把某一段公路的兩側(cè)全部栽上銀杏樹,要求每兩棵樹的間隔相等,并且路的每一側(cè)的兩端都各栽一棵,如果每隔4米栽一棵,則還差102棵;如果每隔5米栽一棵,則多出102棵,設(shè)公路長x米,有y棵樹,則下列方程中:①2(+1)﹣102=2(+1)+102;②﹣102=+102;③4(﹣1)=5(﹣1);④4(﹣1)=5(﹣1),其中正確的是( 。
A.①③B.②③C.①④D.①
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知∠AOB=80°,OC為從O點引出的任意一條射線,若OM平分∠AOC,ON平分∠BOC,則∠MON的度數(shù)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線 (a≠0)的對稱軸為直線x=1,與x軸的一個交點坐標(biāo)為(﹣1,0),其部分圖象如圖所示,下列結(jié)論:
①4ac<b2;
②方程 的兩個根是x1=﹣1,x2=3;
③3a+c>0
④當(dāng)y>0時,x的取值范圍是﹣1≤x<3
⑤當(dāng)x<0時,y隨x增大而增大
其中結(jié)論正確的個數(shù)是( 。
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算題
(1)(﹣2.4)+(﹣3.7)+(﹣4.6)+5.7
(2)﹣20+(﹣14)﹣(﹣18)﹣13
(3)
(4)(﹣3)+12.5+(16)﹣(﹣2.5)
(5)0.75+0.125+(﹣2)﹣(﹣12)+(﹣4)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com