【題目】如圖,在中,對(duì)角線,交于點(diǎn),為的中點(diǎn),點(diǎn)在的延長線上,且.
(1)求證:四邊形是平行四邊形;
(2)當(dāng)線段和之間滿足什么條件時(shí),四邊形是矩形?并說明理由;
(3)當(dāng)線段和之間滿足什么條件時(shí),四邊形是正方形?并說明理由.
【答案】(1)詳見解析;(2)詳見解析;(3)詳見解析
【解析】
(1)首先證明OE是△ABC的中位線,推出OE∥BC,由EF∥OB,推薦可提出四邊形OBFE是平行四邊形.
(2)當(dāng)AD⊥BD時(shí),四邊形OBFE是矩形.只要證明∠EOB=90°即可解決問題;
(3)當(dāng)AD⊥BD,AD=BD時(shí),四邊形OBFE是正方形.根據(jù)中位線性質(zhì)再證OB=OE即可.
(1)證明:∵四邊形ABCD是平行四邊形,
∴點(diǎn)O是AC的中點(diǎn).
又∵點(diǎn)E是邊AB的中點(diǎn),
∴OE是△ABC的中位線,
∴OE∥BC,
又∵點(diǎn)F在CB的延長線上,
∴OE∥BF.
∵EF∥BD,即EF∥OB,
∴四邊形OBFE是平行四邊形.
(2)當(dāng)AD⊥BD時(shí),四邊形OBFE是矩形.
理由:由(1)可知四邊形OBFE是平行四邊形,
又∵AD⊥BD,AD∥BC,且點(diǎn)F在BC的延長線上,
∴FC⊥BD,
∴∠OBF=90°,
∴四邊形OBFE是矩形.
(3)結(jié)論:當(dāng)AD⊥BD,AD=BD時(shí),四邊形OBFE是正方形.
理由:∵OE為△ABD的中位線,
∴OE=AD
∵O為BD中點(diǎn),
∴OB=BD,
∵AD=BD,
∴OB=OE,
∵當(dāng)AD⊥BD時(shí),四邊形OBFE是矩形,
∴當(dāng)AD⊥BD,AD=BD時(shí),四邊形OBFE是正方形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)果農(nóng)收獲草莓30噸,枇杷13噸,現(xiàn)計(jì)劃租用甲、乙兩種貨車共10輛將這批水果全部運(yùn)往省城,已知甲種貨車可裝草莓4噸和枇杷1噸,乙種貨車可裝草莓、枇杷各2噸.
(1)該果農(nóng)安排甲、乙兩種貨車時(shí)有幾種方案請(qǐng)您幫助設(shè)計(jì)出來;
(2)若甲種貨車每輛要付運(yùn)輸費(fèi)2 000元,乙種貨車每輛要付運(yùn)輸費(fèi)1 300元,則該果農(nóng)應(yīng)選擇哪種運(yùn)輸方案才能使運(yùn)費(fèi)最少,最少運(yùn)費(fèi)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,把矩形放在平面直角坐標(biāo)系中,邊在軸上,邊在軸上,連接,且,過點(diǎn)作平分交于點(diǎn).動(dòng)點(diǎn)在線段上運(yùn)動(dòng),過作交于,過作交于.
(1)當(dāng)時(shí),在線段上有一動(dòng)點(diǎn),軸上有一動(dòng)點(diǎn),連接當(dāng)周長最小時(shí),求周長的最小值及此時(shí)點(diǎn)的坐標(biāo);
(2)如圖2,在(1)問的條件下,點(diǎn)是直線上的一個(gè)動(dòng)點(diǎn),問:在軸上是否存在點(diǎn),使得是以為腰的等腰直角三角形?若存在,請(qǐng)直接寫出點(diǎn)及對(duì)應(yīng)的點(diǎn)的坐標(biāo),若沒有,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,直線MN與直線AB、CD分別交于點(diǎn)E、F,∠1與∠2互補(bǔ).
(1)試判斷直線AB與直線CD的位置關(guān)系,并說明理由;
(2)如圖2,∠BEF與∠EFD的角平分線交于點(diǎn)P,EP與CD交于點(diǎn)G,點(diǎn)H是MN上一點(diǎn),且GH⊥EG,求證:PF∥GH;
(3)如圖3,在(2)的條件下,連接PH,K是GH上一點(diǎn)使∠PHK=∠HPK,作PQ平分∠EPK,問∠HPQ的大小是否發(fā)生變化?若不變,請(qǐng)求出其值;若變化,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某!瓣柟怏w育”活動(dòng)的開展情況,從該校1000名學(xué)生中隨機(jī)抽取部分學(xué)生進(jìn)行問卷調(diào)查(每名學(xué)生只能填寫一項(xiàng)自己最喜歡的體育項(xiàng)目),并將調(diào)查結(jié)果繪制成如圖所示的兩幅不完整的統(tǒng)計(jì)圖,根據(jù)圖中信息,解答下列問題:
(1)被調(diào)查的學(xué)生共有多少人?
(2)扇形統(tǒng)計(jì)圖中m的值和a的度數(shù)分別是多少?
(3)根據(jù)部分學(xué)生最喜歡體育項(xiàng)目的調(diào)查情況,請(qǐng)估計(jì)全校學(xué)生中最喜歡籃球的人數(shù)大約有多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形OABC的一邊OA在x軸的負(fù)半軸上,O是坐標(biāo)原點(diǎn),tan∠AOC= ,反比例函數(shù)y= 的圖象經(jīng)過點(diǎn)C,與AB交于點(diǎn)D,若△COD的面積為20,則k的值等于 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】按下面擺好的方式,并使用同一種圖形,只通過平移方式就能進(jìn)行平面鑲嵌(即平面密鋪)的有_______(寫出所有正確答案的序號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形網(wǎng)格中的每一個(gè)小正方形邊長都是1,每個(gè)小格的頂點(diǎn)叫作格點(diǎn),以格點(diǎn)為頂點(diǎn)分別按下列要求畫圖.
(1)畫出一個(gè)周長為24,面積為24的直角三角形;
(2)畫出一個(gè)周長為20,面積為24的菱形;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b(k<0)的圖象經(jīng)過點(diǎn)C(3,0),且與兩坐標(biāo)軸圍成的三角形的面積為3.
(1)求該一次函數(shù)的解析式;
(2)若反比例函數(shù)y=的圖象與該一次函數(shù)的圖象交于二、四象限內(nèi)的A、B兩點(diǎn),且AC=2BC,求m的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com