【題目】如圖所示,點(diǎn)B、F、CE在同一直線上,ACDF相交于G,ABBE,垂足為BDEBE,垂足為E,且AB=DE,BFCE.

求證:(1)△ABC≌△DEF

2)如果∠ACB=25°,求∠AGF的度數(shù)?

【答案】1)見解析;(250°

【解析】

1)根據(jù)SAS即可證得結(jié)論;(2)利用全等三角形的性質(zhì)和三角形的外角性質(zhì)定理即可求出結(jié)果.

1)∵ABBE,DEBE

∴∠ABC=DEF=90,

BFCE

BF+CF=CE+CF,即BC=EF.

RtACBRtDEF中,

∴△ABC≌△DEF(SAS);

2)∵△ABC≌△DEF,

∴∠ACB=DFE

∵∠ACB=25°,

∴∠DFE=25°,

∴∠AGF=DFE+ACB=50°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司生產(chǎn)的一種健身產(chǎn)品在市場(chǎng)上受到普遍歡迎,每年可在國內(nèi)、國外市場(chǎng)上全部售完.該公司的年產(chǎn)量為6000件,若在國內(nèi)市場(chǎng)銷售,平均每件產(chǎn)品的利潤(rùn)與國內(nèi)銷售量的關(guān)系如下表:

銷售量(千件)

單件利潤(rùn)(元)

若在國外銷售,平均每件產(chǎn)品的利潤(rùn)與國外的銷售數(shù)量的關(guān)系如下表:

銷售量(千件)

單件利潤(rùn)(元)

100

(1)用的代數(shù)式表示為:=;

(2)該公司每年國內(nèi)、國外的銷售量各為多少時(shí),可使公司每年的總利潤(rùn)為60萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中, 對(duì)角線AC、BD相交于點(diǎn)O. E、F是對(duì)角線AC上的兩個(gè)不同點(diǎn),當(dāng)EF兩點(diǎn)滿足下列條件時(shí),四邊形DEBF不一定是平行四邊形( ).

A.AECFB.DEBFC.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明和小剛做游戲一個(gè)不透明的布袋里裝有4個(gè)大小、質(zhì)地均相同的乒乓球,球上分別標(biāo)有數(shù)字1,2,3,4,隨機(jī)從布袋中摸出一個(gè)乒乓球,記下數(shù)字后放回布袋里,再隨機(jī)從布袋中摸出一個(gè)乒乓球,若這兩個(gè)乒乓球上的數(shù)字之和能被4整除則小明贏;若兩個(gè)乒乓球上的數(shù)字之和能被5整除則小剛贏;這個(gè)一個(gè)對(duì)游戲雙方公平的游戲嗎?請(qǐng)列表格或畫樹狀圖說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,正方形ABCD中,AB=4cm,點(diǎn)P從點(diǎn)D出發(fā)沿DA向點(diǎn)A勻速運(yùn)動(dòng),速度是1cm/s,同時(shí),點(diǎn)Q從點(diǎn)A出發(fā)沿AB方向,向點(diǎn)B勻速運(yùn)動(dòng),速度是2cm/s,連接PQ、CP、CQ,設(shè)運(yùn)動(dòng)時(shí)間為t(s)(0<t<2)

(1)是否存在某一時(shí)刻t,使得PQBD?若存在,求出t值;若不存在,說明理由

(2)設(shè)PQC的面積為s(cm2),求st之間的函數(shù)關(guān)系式;

(3)如圖2,連接AC,與線段PQ相交于點(diǎn)M,是否存在某一時(shí)刻t,使SQCM:SPCM=3:5?若存在,求出t值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在中,為銳角,點(diǎn)為射線上一點(diǎn),聯(lián)結(jié),以為一邊且在的右側(cè)作正方形

(1)如果,,

①當(dāng)點(diǎn)在線段上時(shí)(與點(diǎn)不重合),如圖2,線段所在直線的位置關(guān)系為 ,線段的數(shù)量關(guān)系為

②當(dāng)點(diǎn)在線段的延長(zhǎng)線上時(shí),如圖3,①中的結(jié)論是否仍然成立,并說明理由;

(2)如果,是銳角,點(diǎn)在線段上,當(dāng)滿足什么條件時(shí),(點(diǎn)不重合),并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的頂點(diǎn)PBC中點(diǎn),兩邊PE、PF分別交AB、AC于點(diǎn)E、F,當(dāng)∠EPF△ABC內(nèi)繞頂點(diǎn)P旋轉(zhuǎn)時(shí)(點(diǎn)E不與A、B重合),給出以下四個(gè)結(jié)論:①AE=CF;②△EPF是等腰直角三角形;③2S四邊形AEPF=SABC;④BE+CF=EF.上述結(jié)論中始終正確的有( 。

A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠ABC=∠DEF,AB=DE,要證明△ABC≌△DEF,需要添加一個(gè)條件為_______(只添加一個(gè)條件即可);

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線平行,直線分別截于點(diǎn)、兩點(diǎn).

1)如圖①,有一動(dòng)點(diǎn)在線段之間運(yùn)動(dòng)(不與E,F兩點(diǎn)重合),試探究、的等量等關(guān)系?試說明理由.

2)如圖②、③,當(dāng)動(dòng)點(diǎn)在線段之外運(yùn)動(dòng)(不與E,F兩點(diǎn)重合),問上述結(jié)論是否還成立?若不成立,試寫出新的結(jié)論并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案