【題目】已知直線平行,直線分別截、于點、兩點.
(1)如圖①,有一動點在線段之間運動(不與E,F兩點重合),試探究、、的等量等關系?試說明理由.
(2)如圖②、③,當動點在線段之外運動(不與E,F兩點重合),問上述結論是否還成立?若不成立,試寫出新的結論并說明理由.
【答案】(1)∠2=∠1+∠3,理由見解析;(2)∠2=∠1+∠3不成立,新的結論為∠2=,理由見解析.
【解析】
(1)如圖④,過點 P作PQ∥AB,則∠1=∠APQ,根據(jù)平行線的性質,即可得到結論;
(2)分兩種情況:(i)當點P在FE的延長線上時,如圖⑤,過點 P作PQ∥AB,(ii)當點P在EF的延長線上時,如圖⑥,過點 P作PQ∥AB,分別求出∠2、∠1、∠3的數(shù)量關系,即可得到結論.
(1)∠2=∠1+∠3,理由如下:
如圖④,過點 P作PQ∥AB,則∠1=∠APQ.
∵AB∥CD,PQ∥AB,
∴PQ∥CD,
∴∠3=∠CPQ.
∵∠2=∠APQ+∠CPQ=∠1+∠3;
(2)∠2=∠1+∠3 不成立,新的結論為∠2=.理由如下:
(i)當點P在FE的延長線上時,
如圖⑤,過點 P作PQ∥AB,則∠1=∠APQ.
∵AB∥CD,PQ∥AB,
∴PQ∥CD,
∴∠3=∠CPQ.
∴∠2=∠CPQ∠APQ=∠3∠1;
(ii)當點P在EF的延長線上時,
如圖⑥,過點 P作PQ∥AB,則∠1=∠APQ.
∵AB∥CD,PQ∥AB,
∴PQ∥CD,
∴∠3=∠CPQ,
∴∠2=∠APQ∠CPQ=∠1∠3.
綜上所述:∠2=.
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,點B、F、C、E在同一直線上,AC、DF相交于G,AB⊥BE,垂足為B,DE⊥BE,垂足為E,且AB=DE,BF=CE.
求證:(1)△ABC≌△DEF;
(2)如果∠ACB=25°,求∠AGF的度數(shù)?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某家電超市經營甲、乙兩種品牌的洗衣機.經投標發(fā)現(xiàn),1臺甲品牌冼衣機進價比1臺乙品牌洗衣機進價貴500元;購進2臺甲品牌洗衣機和3臺乙品牌洗衣機共需進貨款13500元.
(1)購進1臺甲品牌洗衣機和1臺乙品牌洗衣機進價各需要多少元?
(2)超市根據(jù)經營實際情況,需購進甲、乙兩種品牌的洗衣機總數(shù)為50臺,購進甲、乙兩種品牌的洗衣機的總費用不超過145250元.
①請問甲品牌洗衣機最多購進多少臺?
②超市從經營實際需要出發(fā),其中甲品牌洗衣機購進的臺數(shù)不少于乙晶牌冼衣機臺數(shù)的3倍,則該超市共有幾種購進方案?試寫出所有的購進方案.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一家商店進行裝修,若請甲、乙兩個裝修組同時施工,8天可以完成,需付兩組費用共3520元,若先請甲組單獨做6天,再請乙組單獨做12天可以完成,需付費用3480元,問:
(1)甲,乙兩組工作一天,商店各應付多少錢?
(2)已知甲單獨完成需12天,乙單獨完成需24天,單獨請哪個組,商店所需費用最少?
(3)若裝修完后,商店每天可贏利200元,你認為如何安排施工更有利于商店?請你幫助商店決策.(可用(1)(2)問的條件及結論)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】校園空地上有一面墻,長度為20m,用長為32m的籬笆和這面墻圍成一個矩形花圃,如圖所示.
(1)能圍成面積是126m2的矩形花圃嗎?若能,請舉例說明;若不能,請說明理由.
(2)若籬笆再增加4m,圍成的矩形花圃面積能達到170m2嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC中,D是BC邊上的一點,E是AD的中點,過A點作BC的平行線,交CE的延長線于點F,且AF=BD,連接BF.
(1)求證:BD=CD;(2)如果AB=AC,試判斷四邊形AFBD的形狀,并證明你的結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,把正方形鐵片OABC置于平面直角坐標系中,頂點A的坐標為(3,0),點P(1,2)在正方形鐵片上,將正方形鐵片繞其右下角的頂點按順時針方向依次旋轉90°,第一次旋轉至圖①位置,第二次旋轉至圖②位置…,則正方形鐵片連續(xù)旋轉2017次后,點P的坐標為____________________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某年級共有400名學生,為了解該年級學生上學的交通方式,從中隨機抽取100名學生進行問卷調查,并對調查數(shù)據(jù)進行整理、描述和分析,下面給出了部分信息
A.不同交通方式學生人數(shù)分布統(tǒng)計圖如下:
B.采用公共交通方式單程所花費時間(分鐘)的頻數(shù)分布直方圖如下(數(shù)據(jù)分成6組:,,,,,);
根據(jù)以上信息,完成下列問題:
(1)補全頻數(shù)分布直方圖;
(2)根據(jù)不同交通方式學生人數(shù)所占的百分比,算出“私家車方式”對應扇形的圓心角是度_____.
(3)請你估計全年級乘坐公共交通上學有_____人,其中單程不少于60分鐘的有_____人.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,線段AB=9,射線BG⊥AB,P為射線BG上一點,以AP為邊作正方形APCD,且C、D與點B在AP兩側,在線段DP取一點E,使∠EAP=∠BAP,直線CE與線段AB相交于點F(點F與點A、B不重合).
(1)求證:△AEP≌△CEP;
(2)判斷CF與AB的位置關系,并說明理由;
(3)求△AEF的周長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com