如圖,PA切⊙O于點A,PO交⊙O于點B,若PA=6,BP=4,則⊙O的半徑為( )

A.
B.
C.2
D.5
【答案】分析:連接OA.根據(jù)勾股定理求解.
解答:解:連接OA,
∵PA切⊙O于點A,
則∠OAP=90°,
∴PA2+OA2=OP2
∵PA=6,BP=4,
∴36+OA2=(OB+4)2,
解得OA=
故選B.
點評:此題主要考查學生對切線的性質及勾股定理的運用.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,PA切⊙O于點A,PC過點O且于點B、C,若PA=6cm,PB=4cm,則⊙O的半徑為
 
cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

21、如圖,PA切⊙O于點A,割線PBC交⊙O于B、C兩點,∠APC的平分線分別交AC、AB于D、E兩點.請在圖中找出2對相似三角形,并從中選擇一對相似三角形說明其為什么相似.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

6、如圖,PA切⊙O于點A,PBC是經過O點的割線,若∠P=30°,則弧AB的度數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,PA切⊙O于點A,PBC是⊙O的割線,若PB=BC=2,則PA=
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,PA切⊙O于點A,PBC是經過圓心的割線,并與圓相交于點B,C.若PC=9,PA=3,則∠P的余弦值是( 。

查看答案和解析>>

同步練習冊答案