【題目】如圖1,已知拋物線的頂點(diǎn)坐標(biāo)為(0,1)且經(jīng)過點(diǎn)A(1,2),直線y=3x﹣4經(jīng)過點(diǎn)B(,n),與y軸交點(diǎn)為C.
(1)求拋物線的解析式及n的值;
(2)將直線BC繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)45°,求旋轉(zhuǎn)后的直線的解析式;
(3)如圖2將拋物線繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)45°得到新曲線,新曲線與直線BC交于點(diǎn)M、N,點(diǎn)M在點(diǎn)N的上方,求點(diǎn)N的坐標(biāo).
【答案】(1)y=x2+1,n=2;(2)y=﹣2x+4;(3)N(,).
【解析】
(1)拋物線的表達(dá)式為:y=ax2+1,將點(diǎn)A坐標(biāo)代入上式得:2=a+1,即可求解;
(2)點(diǎn)B圍繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)45°,落在y軸上,設(shè)為點(diǎn)B′(0,4),同理點(diǎn)C(0,﹣4)圍繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)45°,設(shè)旋轉(zhuǎn)后該點(diǎn)對應(yīng)點(diǎn)C′(4,﹣4),即可求解;
(3)在圖2中,作直線y=﹣2x+4交拋物線于點(diǎn)N′,則拋物線和直線y=﹣2x+4繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)45°得到新曲線和直線線y=3x﹣4,由ON=ON′,即可求解.
解:(1)拋物線的表達(dá)式為:y=ax2+1,
將點(diǎn)A坐標(biāo)代入上式得:2=a+1,解得:a=1,
故拋物線的表達(dá)式為:y=x2+1,
n=3×2﹣4=2;
(2)∵點(diǎn)B的橫坐標(biāo)和縱坐標(biāo)相同,BO=4,
故點(diǎn)B圍繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)45°,落在y軸上,設(shè)為點(diǎn)B′(0,4),
同理點(diǎn)C(0,﹣4)圍繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)45°,設(shè)旋轉(zhuǎn)后該點(diǎn)對應(yīng)點(diǎn)C′(4,﹣4),
將BC坐標(biāo)代入一次函數(shù)表達(dá)式:y=mx+n得:,解得:,
故旋轉(zhuǎn)后直線的表達(dá)式為:y=﹣2x+4;
(3)在圖2中,作直線y=﹣2x+4交拋物線于點(diǎn)N′,
則拋物線和直線y=﹣2x+4繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)45°得到新曲線和直線線y=3x﹣4,
聯(lián)立y=x2+1與y=﹣2x+4并解得:x=1或﹣3(舍去﹣3),故點(diǎn)N′(1,2),
設(shè)點(diǎn)N(m,3m﹣4),
由題意得:ON=ON′,
即:,解得:m=(不合題意值已舍去),
故點(diǎn)N′(,).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,F為弦AC的中點(diǎn),連接OF并延長交弧AC于點(diǎn)D,過點(diǎn)D作⊙O的切線,交BA的延長線于點(diǎn)E.
(1)求證:AC∥DE;
(2)連接AD、CD、OC.填空
①當(dāng)∠OAC的度數(shù)為 時(shí),四邊形AOCD為菱形;
②當(dāng)OA=AE=2時(shí),四邊形ACDE的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校計(jì)劃組織學(xué)生參加“書法”、“攝影”、“航!薄ⅰ皣濉彼膫(gè)課外興趣小組,要求每人必須參加,并且只能選擇其中一個(gè)小組,為了解學(xué)生對四個(gè)課外興趣小組的選擇情況,學(xué)校從全體學(xué)生中隨機(jī)抽取部分學(xué)生進(jìn)行問卷調(diào)查,并把調(diào)查結(jié)果制成如圖所示的扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖(部分信息未給出),請你根據(jù)給出的信息解答下列問題:
(1)求參加這次問卷調(diào)查的學(xué)生人數(shù),并補(bǔ)全條形統(tǒng)計(jì)圖(畫圖后請標(biāo)注相應(yīng)的數(shù)據(jù));
(2)m=_______,n=_______;
(3)若該校共有1200名學(xué)生,試估計(jì)該校選擇“圍棋”課外興趣小組的學(xué)生有多少人?
(4)分別用A、B、C、D表示“書法”、“攝影”、“航!薄ⅰ皣濉,小明和小紅從中各選取一個(gè)小組,請用樹狀圖法或列表法求出“兩人選擇小組不同”的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】國家計(jì)劃2035年前實(shí)施新能源汽車,某公司為加快新舊動(dòng)能轉(zhuǎn)換,提高公司經(jīng)濟(jì)效益,決定對近期研發(fā)出的一種新型能源產(chǎn)品進(jìn)行降價(jià)促銷.根據(jù)市場調(diào)查:這種新型能源產(chǎn)品銷售單價(jià)定為200元時(shí),每天可售出300個(gè);若銷售單價(jià)每降低1元,每天可多售出5個(gè).已知每個(gè)新型能源產(chǎn)品的成本為100元.
問:(1)設(shè)該產(chǎn)品的銷售單價(jià)為元,每天的利潤為元.則_________(用含的代數(shù)式表示)
(2)這種新型能源產(chǎn)品降價(jià)后的銷售單價(jià)為多少元時(shí),公司每天可獲利32000元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在抗擊新型冠狀病毒感染的肺炎疫情過程中,某醫(yī)藥研究所正在試研發(fā)一種抑制新型冠狀病毒的藥物,據(jù)臨床觀察:如果成人按規(guī)定的劑量注射這種藥物,注射藥物后每毫升血液中的含藥量(微克)與時(shí)間(小時(shí))之間的關(guān)系近似地滿足圖中折線.
(1)求注射藥物后每毫升血液中含藥量與時(shí)間之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
(2)據(jù)臨床觀察:每毫升血液中含藥量不少于微克時(shí),對控制病情是有效的.如果病人按規(guī)定的劑量注射 該藥物后,求控制病情的有效時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校舉辦園博會(huì)知識(shí)競賽,打算購買A、B兩種獎(jiǎng)品.如果購買A獎(jiǎng)品10件、B獎(jiǎng)品5件,共需120元;如果購買A獎(jiǎng)品5件、B獎(jiǎng)品10件,共需90元.
(1)A,B兩種獎(jiǎng)品每件各多少元?
(2)若購買A、B獎(jiǎng)品共100件,總費(fèi)用不超過600元,則A獎(jiǎng)品最多購買多少件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在四邊形ABCD中,AD∥BC,AD=2BC,點(diǎn)E為AD的中點(diǎn),連接BE、BD,∠ABD=90°.
(1)如圖l,求證:四邊形BCDE為菱形;
(2)如圖2,連接AC交BD于點(diǎn)F,連接EF,若AC平分∠BAD,在不添加任何輔助線的情況下,請直接寫出圖2中四個(gè)三角形,使寫出的每個(gè)三角形的面積都等于△ABC面積的.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司開發(fā)處一款新的節(jié)能產(chǎn)品,該產(chǎn)品的成本價(jià)為6元/件,該產(chǎn)品在正式投放市場前通過代銷點(diǎn)進(jìn)行了為期一個(gè)月(30天)的試銷售,售價(jià)為10元/件,工作人員對銷售情況進(jìn)行了跟蹤記錄,并將記錄情況繪制成圖象,圖中的折線ABC表示日銷售量y(件)與銷售時(shí)間x(天)之間的函數(shù)關(guān)系.
(1)求y與x之間的函數(shù)表達(dá)式,并寫出x的取值范圍;
(2)若該節(jié)能產(chǎn)品的日銷售利潤為W(元),求W與x之間的函數(shù)表達(dá)式,并求出日銷售利潤不超過1040元的天數(shù)共有多少天?
(3)若5≤x≤17,直接寫出第幾天的日銷售利潤最大,最大日銷售利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,四邊形內(nèi)接于⊙,是⊙的直徑,過點(diǎn)的切線與的延長線相交于點(diǎn).且,連接.
(1)求證:;
(2)過點(diǎn)作,垂足為,當(dāng)時(shí),求⊙的半徑;
(3)在(2)的條件下,求陰影部分的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com