【題目】為迎接全國文明城市的評選,市政府決定對春風路進行市政化改造,經(jīng)過市場招標,決定聘請甲、乙兩個工程隊合作施工,已知春風路全長24千米,甲工程隊每天施工的長度比乙工程隊每天施工長度的多施工0.4千米,由甲工程隊單獨施工完成任務所需要的天數(shù)是乙工程隊單獨完成任務所需天數(shù)的

(1)求甲、乙兩個工程隊每天各施工多少千米?

(2)若甲工程隊每天的施工費用為0.8萬元,乙工程隊每天的施工費用為0.5萬元,要使兩個工程隊施工的總費用不超過7萬元,則甲工程隊至多施工多少天?

【答案】(1)甲隊每天修2.4千米,乙隊每天修2千米;(2)甲工程隊至多施工5天.

【解析】

1)設甲隊每天完成x千米,則乙隊每天完成(x0.4)千米,然后依據(jù)甲工程隊單獨施工完成任務所需要的天數(shù)是乙工程隊單獨完成任務所需天數(shù)的列方程求解即可;

2)設甲隊改造a,則乙隊改造(24a)米,然后依據(jù)兩個工程隊施工的總費用不超過7萬元列不等式求得a的范圍從而可求得甲工程隊至多施工的天數(shù).

1)設甲隊每天完成x千米,則乙隊每天完成(x0.4)千米.根據(jù)題意得

=×,

解得x=2.4

經(jīng)檢驗,x=2.4是原方程的解.

 2.40.4=2

甲隊每天修2.4千米,乙隊每天修2千米.

2)設甲隊改造a,則乙隊改造(24a)米.根據(jù)題意得

×0.8+×0.57,

解得a12

=5

甲工程隊至多施工5天.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知三角形紙片ABC的面積為48,BC的長為8.按下列步驟將三角形紙片ABC進行裁剪和拼圖:

第一步:如圖1,沿三角形ABC的中位線DE將紙片剪成兩部分.在線段DE上任意取一點F,在線段BC上任意取一點H,沿FH將四邊形紙片DBCE剪成兩部分;

第二步:如圖2,將FH左側(cè)紙片繞點D旋轉(zhuǎn)180°,使線段DB與DA重合;將FH右側(cè)紙片繞點E旋轉(zhuǎn)180°,使線段EC與EA重合,再與三角形紙片ADE拼成一個與三角形紙片ABC面積相等的四邊形紙片.

圖1 圖2

(1)當點F,H在如圖2所示的位置時,請按照第二步的要求,在圖2中補全拼接成的四邊形;

(2)在按以上步驟拼成的所有四邊形紙片中,其周長的最小值為_________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示的圖案是由六個全等的直角三角形組成,點O是該圖案的中心,則該圖案可看成由一個直角三角形繞O點順時針依次旋轉(zhuǎn)________得到,或可看成由兩個相鄰的直角三角形繞O點順時針依次旋轉(zhuǎn)________得到,或可看成由三個相鄰的直角三角形繞O點旋轉(zhuǎn)________得到.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ACBC,BDAD,AC 與BD 交于O,AC=BD.

求證:(1)BC=AD;

(2)OAB是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一次函數(shù)y=ax+c(a≠0)與二次函數(shù)y=ax2+bx+c(a≠0)在同一平面直角坐標系中的圖像可能是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD的對角線交于點O,下列哪組條件不能判斷四邊形ABCD是平行四邊形( ).

A. OA=OC,OB=OD B. BAD=BCD,ABCD

C. ADBC,AD=BC D. AB=CD,AO=CO

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了參加學校舉行的傳統(tǒng)文化知識競賽,某班進行了四次模擬訓練,將成績優(yōu)秀的人數(shù)和優(yōu)秀率繪制成如下兩個不完整的統(tǒng)計圖:

(1)該班總?cè)藬?shù)是 ;

(2)根據(jù)計算,請你補全兩個統(tǒng)計圖;

(3)觀察補全后的統(tǒng)計圖,寫出一條你發(fā)現(xiàn)的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中國式過馬路,是網(wǎng)友對部分中國人集體闖紅燈現(xiàn)象的一種調(diào)侃,即“湊夠一撮人就可以走了,和紅綠燈無關”針對這種現(xiàn)象某媒體記者在多個路口采訪闖紅燈的行人,得出形成這種現(xiàn)象的四個基本原因:①紅綠燈設置不科學,交通管理混亂;②僥幸心態(tài);③執(zhí)法力度不夠;④從眾心理.該記者將這次調(diào)查情況整理并繪制了如下尚不完整的統(tǒng)計圖,請根據(jù)相關信息,解答下列問題.
(1)該記者本次一共調(diào)査了名行人;
(2)求圖1中④所在扇形的圓心角,并補全圖2;
(3)在本次調(diào)查中,記者隨機采訪其中的一名行人,求他屬于第②種情況的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】課外興趣小組活動時,老師出示了如下問題:如圖①,已知在四邊形ABCD中,AC平分∠DAB,DAB=60°,B與∠D互補,求證:AB+AD=AC.

小敏反復探索,不得其解.她想,可先將四邊形ABCD特殊化,再進一步解決該問題.

(1)由特殊情況入手,添加條件:B=D”,如圖②,可證AB+AD=AC.請你完成此證明.

(2)受到(1)的啟發(fā),在原問題中,添加輔助線:過C點分別作AB,AD的垂線,垂足分別為點E,F(xiàn),如圖③.請你補全證明過程.

查看答案和解析>>

同步練習冊答案