在平面直角坐標系xOy中,一塊含60°角的三角板作如圖擺放,斜邊AB在x軸上,直角頂點C在y軸正半軸上,已知點A(-1,0).

(1)請直接寫出點B,C的坐標:B(    ),C(    );
(2)求經(jīng)過A,B,C三點的拋物線解析式;
(3)現(xiàn)有與上述三角板完全一樣的三角板DEF(其中∠EDF=90°,∠DEF=60°),把頂點E放在線段AB上(點E是不與A,B兩點重合的動點),并使ED所在直線經(jīng)過點C.此時,EF所在直線與(2)中的拋物線交于第一象限的點M.當AE=2時,拋物線的對稱軸上是否存在點P使△PEM是等腰三角形,若存在,請求出點P的坐標;若不存在,請說明理由.
(1)、;(2);(3)存在,P點坐標為(1,2)或(1,-2)或(1,)或(1,).

試題分析:(1)如圖,已知∠CAB=600,所以∠ACO=300,所以AC=2AO,又由A(-1,0).可知AO=1,所以AC=2,
在Rt△ACB中,∠ABC=300,所以AB=2AC,即AB=4,所以點B的坐標是(3,0)由勾股定理可得CO=.所以
點B、C的坐標分別為:、.
如圖,已知拋物線與x軸兩交點A、B的坐標,可設拋物線的解析式為:,再由點C
的坐標求出a的值即可求解.
(3)求滿足使△PEM為等腰三角形的動點P的坐標,一般地,當一等腰三角形的兩腰不明確時,應分類討論如下:①當EP=EM時,即以點E為圓心,以EM為半徑作圓與對稱軸的交點即為所求點P;②當EM=PM時,即以點M為圓心,以EM為半徑作圓與對稱軸的交點即為所求點P;③當PE=PM時,線段EM的垂直平分線與對稱軸的交點即為所求點P.先由已知求證△CAE為等邊三角形,過點M作MN⊥x軸,求出點M的坐標,再依次求出上述各種情況下滿足條件的點P的坐標.
試題解析:
解:(1)、.
(2)∵點A(-1,0),B(3,0),
∴可設經(jīng)過A,B,C三點的拋物線的解析式為,
∵點C(0,)也在此拋物線上,
, 解得:,
∴此拋物線的解析式為
存在.如圖所示:

∵AE=2,
∴OE=1,
∴E(1,0),此時,△CAE為等邊三角形.
∴∠AEC=∠A=60°.
又∵∠CEM=60°,
∴∠MEB=60°.
∴點C與點M關于拋物線的對稱軸對稱.
∵C(0,),
∴M(2,).
過M作MN⊥x軸于點N(2,0),
∴MN=
∴ EN=1.

若△PEM為等腰三角形,則:
①如圖1,當EP=EM時,∵EM=2,且點P在直線x=1上,∴P(1,2)或P(1,-2).
②如圖2,當EM=PM時,點M在EP的垂直平分線上,∴P(1,).
③如圖3,當PE=PM時,點P是線段EM的垂直平分線與直線x=1的交點,∴P(1,).
∴綜上所述,存在P點坐標為(1,2)或(1,-2)或(1,)或(1,)時,△EPM為等腰三角形.
考點,1、求二次函數(shù)解析式;2、動點問題-滿足等腰三角形的點的坐標.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

已知拋物線(a≠0)的對稱軸是直線l,頂點為點M.若自變量x和函數(shù)值y1的部分對應值如下表所示:
x

―1
0
3



0

0

(1)求y1與x之間的函數(shù)關系式;
(2)若經(jīng)過點T(0,t)作垂直于y軸的直線l′,A為直線l′上的動點,線段AM的垂直平分線交直線l于點B,點B關于直線AM的對稱點為P,記P(x,y2).
①求y2與x之間的函數(shù)關系式;
②當x取任意實數(shù)時,若對于同一個x,有y1<y2恒成立,求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知拋物線過兩點(m,0)、(n,0),且,拋物線于雙曲線(x>0)的交點為(1,d).
(1)求拋物線與雙曲線的解析式;
(2)已知點都在雙曲線(x>0)上,它們的橫坐標分別為,O為坐標原點,記,點Q在雙曲線(x<0)上,過Q作QM⊥y軸于M,記。
的值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:計算題

在“母親節(jié)”期間,某校部分團員參加社會公益活動,準備購進一批許愿瓶進行銷售,并將所得利潤捐給慈善機構.根據(jù)市場調(diào)查,這種許愿瓶一段時間內(nèi)的銷售量(個)與銷售單價(元/個)之間的對應關系如圖所示:

(1)觀察圖象判斷之間的函數(shù)關系,并求出函數(shù)關系式;
(2)若許愿瓶的進價為6元/個,按照上述市場調(diào)查的銷售規(guī)律,求銷售利潤(元)與銷售單價(元/個)之間的函數(shù)關系式;
(3)若許愿瓶的進貨成本不超過900元,要想獲得最大的利潤,試確定這種許愿瓶的銷售單價,并求出此時的最大利潤.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

某商店將進價為8元的商品按每件10元售出,每天可售出200件,現(xiàn)在采取提高商品售價減少銷售量的辦法增加利潤,若這種商品每件的銷售價每提高0.5元,其銷售量就減少10件.問(1)每件售價定為多少元時,才能使利潤為640元?(2)每件售價定為多少元時,才能使利潤最大?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

拋物線y=a(x+1)(x-3)(a≠0)的對稱軸是直線(   )
A.x=1B.x=-1 C.x=-3D.x=3

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,拋物線與直線交于C,D兩點,其中點C在y軸上,點D的坐標為。點P是y軸右側的拋物線上一動點,過點P作軸于點E,交CD于點F.

(1)求拋物線的解析式;
(2)若點P的橫坐標為m,當m為何值時,以O,C,P,F(xiàn)為頂點的四邊形是平行四邊形?請說明理由。
(3)若存在點P,使,請直接寫出相應的點P的坐標

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

已知直線y=b(b為實數(shù))與函數(shù) y= 的圖像至少有三個公共點,則實數(shù)b的取值范圍             .

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

若二次函數(shù)的圖象與x軸有兩個交點,坐標分別為(,0),(,0),且,圖象上有一點M()在x軸下方,則下列判斷中正確的是(    ).
A.B.
C.D.

查看答案和解析>>

同步練習冊答案