如圖,拋物線與直線交于C,D兩點(diǎn),其中點(diǎn)C在y軸上,點(diǎn)D的坐標(biāo)為。點(diǎn)P是y軸右側(cè)的拋物線上一動(dòng)點(diǎn),過(guò)點(diǎn)P作軸于點(diǎn)E,交CD于點(diǎn)F.

(1)求拋物線的解析式;
(2)若點(diǎn)P的橫坐標(biāo)為m,當(dāng)m為何值時(shí),以O(shè),C,P,F(xiàn)為頂點(diǎn)的四邊形是平行四邊形?請(qǐng)說(shuō)明理由。
(3)若存在點(diǎn)P,使,請(qǐng)直接寫出相應(yīng)的點(diǎn)P的坐標(biāo)
(1);(2)當(dāng)m=1或2或時(shí),以O(shè),C,P,F(xiàn)為頂點(diǎn)的四邊形是平行四邊形,理由見(jiàn)解析;(3)P()或().

試題分析:(1)由直線經(jīng)過(guò)點(diǎn)C,求出點(diǎn)C的坐標(biāo);由拋物線經(jīng)過(guò)點(diǎn)C,D兩點(diǎn),用待定系數(shù)法即可求出拋物線的解析式;(2)因?yàn)镻F∥CO,所以當(dāng)PF=CO時(shí),以O(shè),C,P,F(xiàn)為頂點(diǎn)的四邊形是平行四邊形,分兩種情況討論即可;(3)如圖,當(dāng)點(diǎn)P在CD上方且∠PCF=450時(shí),作PM⊥CD于點(diǎn)M,CN⊥PF于點(diǎn)N,則△PMF∽△CNF,∴,∴PM=CM=2CF,∴,又∵,∴,解得:(舍去),∴P(),當(dāng)點(diǎn)P在CD下方且∠PCF=450時(shí),同理可以求得:另外一點(diǎn)為P().

試題解析:(1)∵直線經(jīng)過(guò)點(diǎn)C,∴C(0,2).
∵拋物線經(jīng)過(guò)點(diǎn)C(0,2),D ,
,解得.
∴拋物線的解析式為.
(2)∵點(diǎn)P的橫坐標(biāo)為m且在拋物線上, ∴.
∵PF∥CO,∴當(dāng)PF=CO時(shí),以O(shè),C,P,F(xiàn)為頂點(diǎn)的四邊形是平行四邊形.
當(dāng)時(shí),,
,解得:.
即當(dāng)m=1或2時(shí),四邊形OCPF是平行四邊形.
當(dāng)時(shí),,
,解得:(∵點(diǎn)P在y軸右側(cè)的拋物線上,∴舍去).
即當(dāng)時(shí),四邊形OCFP是平行四邊形.
綜上所述,當(dāng)m=1或2或時(shí),以O(shè),C,P,F(xiàn)為頂點(diǎn)的四邊形是平行四邊形.
(3)P()或().
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy中,一塊含60°角的三角板作如圖擺放,斜邊AB在x軸上,直角頂點(diǎn)C在y軸正半軸上,已知點(diǎn)A(-1,0).

(1)請(qǐng)直接寫出點(diǎn)B,C的坐標(biāo):B(    ),C(  ,  );
(2)求經(jīng)過(guò)A,B,C三點(diǎn)的拋物線解析式;
(3)現(xiàn)有與上述三角板完全一樣的三角板DEF(其中∠EDF=90°,∠DEF=60°),把頂點(diǎn)E放在線段AB上(點(diǎn)E是不與A,B兩點(diǎn)重合的動(dòng)點(diǎn)),并使ED所在直線經(jīng)過(guò)點(diǎn)C.此時(shí),EF所在直線與(2)中的拋物線交于第一象限的點(diǎn)M.當(dāng)AE=2時(shí),拋物線的對(duì)稱軸上是否存在點(diǎn)P使△PEM是等腰三角形,若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若二次函數(shù)y=ax2+bx+c的x與y的部分對(duì)應(yīng)值如下表:
x
﹣7
﹣6
﹣5
﹣4
﹣3
﹣2
y
﹣27
﹣13
﹣3
3
5
3
則當(dāng)x=1時(shí),y的值為( 。
A.5      B.﹣3      C.﹣13      D.﹣27

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某公司營(yíng)銷兩種產(chǎn)品,根據(jù)市場(chǎng)調(diào)研,發(fā)現(xiàn)如下信息:
信息1:銷售種產(chǎn)品所獲利潤(rùn)(萬(wàn)元)與所售產(chǎn)品(噸)之間存在二次函數(shù)關(guān)系
.當(dāng)時(shí), ;當(dāng)時(shí),
信息2:銷售種產(chǎn)品所獲利潤(rùn) (萬(wàn)元)與所售產(chǎn)品(噸)之間存在正比例函數(shù)關(guān)系
根據(jù)以上信息,解答下列問(wèn)題:(1)求二次函數(shù)解析式;
(2)該公司準(zhǔn)備購(gòu)進(jìn)兩種產(chǎn)品共10噸,請(qǐng)?jiān)O(shè)計(jì)一個(gè)營(yíng)銷方案,使銷售兩種產(chǎn)品獲得的利潤(rùn)之和最大,最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線.
(1)通過(guò)配方,將拋物線的表達(dá)式寫成的形式(要求寫出配方過(guò)程);
(2)求出拋物線的對(duì)稱軸和頂點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知二次函數(shù).

(1)當(dāng)二次函數(shù)的圖象經(jīng)過(guò)坐標(biāo)原點(diǎn)O(0,0)時(shí),求二次函數(shù)的解析式;
(2)如圖,當(dāng)m=2時(shí),該拋物線與y軸交于點(diǎn)C,頂點(diǎn)為D,求C、D兩點(diǎn)的坐標(biāo);
(3)在(2)的條件下,x軸上是否存在一點(diǎn)P,使得PC+PD最短?若P點(diǎn)存在,求出P點(diǎn)的坐標(biāo);若P點(diǎn)不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

函數(shù)在同一坐標(biāo)系中的大致圖象是(   )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

將拋物線y=3x2向左平移2個(gè)單位,再向下平移1個(gè)單位,所得拋物線為(  )
A.B.
C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知二次函數(shù)y=ax2+bx+c的部分圖象如圖所示,那么下列判斷不正確的是(  )
A.a(chǎn)c<0
B.a(chǎn)-b+c>0
C.b=-4a
D.關(guān)于x的方程ax2+bx+c=0根是x1=-1,x2=5

查看答案和解析>>

同步練習(xí)冊(cè)答案