如圖,已知⊙O的半徑為2,弦BC的長(zhǎng)為,點(diǎn)A為弦BC所對(duì)優(yōu)弧上任意一點(diǎn)(B,C兩點(diǎn)除外).
(1)求∠BAC的度數(shù);
(2)求△ABC面積的最大值.(參考數(shù)據(jù): ,,.)
解:(1) 解法一
連接OB,OC,過(guò)O作OE⊥BC于點(diǎn)E.
∵OE⊥BC,BC=,
∴.
在Rt△OBE中,OB=2,∵,
∴, ∴,
∴.
解法二
連接BO并延長(zhǎng),交⊙O于點(diǎn)D,連接CD.
∵BD是直徑,∴BD=4,.
在Rt△DBC中,,
∴,∴.
(2) 解法一
因?yàn)椤?i>ABC的邊BC的長(zhǎng)不變,所以當(dāng)BC邊上的高最大時(shí),△ABC的面積最大,此時(shí)點(diǎn)A落在優(yōu)弧BC的中點(diǎn)處.
過(guò)O作OE⊥BC于E,延長(zhǎng)EO交⊙O于點(diǎn)A,則A為優(yōu)弧BC的中點(diǎn).連接AB,AC,則AB=AC,.
在Rt△ABE中,∵,
∴,
∴S△ABC=.
答:△ABC面積的最大值是.
解法二
因?yàn)椤?i>ABC的邊BC的長(zhǎng)不變,所以當(dāng)BC邊上的高最大時(shí),△ABC的面積最大,此時(shí)點(diǎn)A落在優(yōu)弧BC的中點(diǎn)處.
過(guò)O作OE⊥BC于E,延長(zhǎng)EO交⊙O于點(diǎn)A,則A為優(yōu)弧BC的中點(diǎn).連接AB,AC,則AB=AC.
∵, ∴△ABC是等邊三角形.
在Rt△ABE中,∵,
∴,
∴S△ABC=.
答:△ABC面積的最大值是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
1 | 3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
A、0.6 | B、0.8 | C、0.5 | D、1.2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com