如圖,在Rt△ABC中,∠C=90°,點O在BC上,CD為⊙O的直徑,⊙O切AB于E,若AC=8,AB=17,求⊙O的半徑.

【答案】分析:連接OE,根據(jù)∠C=90°,推出AC與⊙O相切于點C,由⊙O切AB于E,推出AC=AE=8,即得BE=9,根據(jù)題意,結(jié)合勾股定理即可得BC=15,然后通過求證△ACB∽△OEB,根據(jù)對應邊成比例,即可求出OE的長度,即⊙O的半徑長度.
解答:解:連接OE,
∵∠C=90°,
∴AC與⊙O相切于點C,
∵⊙O切AB于E,AC=8,
∴AC=AE=8,OE⊥AB,
∵AB=17,
∴BE=9,
∵Rt△ABC中,AC=8,AB=17,
∴BC=15,
∵∠B=∠B,
∴△ACB∽△OEB,

∵AC=8,BC=15,BE=9,
∴OE=,即⊙O的半徑為

點評:本題主要考查勾股定理,相似三角形的判定與性質(zhì),切線的性質(zhì)等知識點的應用,關(guān)鍵在于熟練的應用各性質(zhì)定理,求出BE的長度,正確的求證△ACB∽△OEB.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

(2013•莆田質(zhì)檢)如圖,在Rt△ABC中,∠C=90°,∠BAC的平分線AD交BC于點D,點E是AB上一點,以AE為直徑的⊙O過點D,且交AC于點F.
(1)求證:BC是⊙O的切線;
(2)若CD=6,AC=8,求AE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分別是∠BAC和∠ABC的平分線,它們相交于點D,求點D到BC的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,將三角板中一個30°角的頂點D放在AB邊上移動,使這個30°角的兩邊分別與△ABC的邊AC、BC相交于點E、F,且使DE始終與AB垂直.
(1)畫出符合條件的圖形.連接EF后,寫出與△ABC一定相似的三角形;
(2)設(shè)AD=x,CF=y.求y與x之間函數(shù)解析式,并寫出函數(shù)的定義域;
(3)如果△CEF與△DEF相似,求AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,BD⊥AC,sinA=
3
5
,則cos∠CBD的值是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分別為邊AB、BC的中點,連接DE,點P從點A出發(fā),沿折線AD-DE-EB運動,到點B停止.點P在AD上以
5
cm/s的速度運動,在折線DE-EB上以1cm/s的速度運動.當點P與點A不重合時,過點P作PQ⊥AC于點Q,以PQ為邊作正方形PQMN,使點M落在線段AC上.設(shè)點P的運動時間為t(s).
(1)當點P在線段DE上運動時,線段DP的長為
(t-2)
(t-2)
cm,(用含t的代數(shù)式表示).
(2)當點N落在AB邊上時,求t的值.
(3)當正方形PQMN與△ABC重疊部分圖形為五邊形時,設(shè)五邊形的面積為S(cm2),求S與t的函數(shù)關(guān)系式.

查看答案和解析>>

同步練習冊答案