【題目】某學(xué)校為了改善辦學(xué)條件,計(jì)劃購置一電子白板和一批筆記本電腦,經(jīng)投標(biāo),購買一塊電子白板比買三臺(tái)筆記本電腦多3000元,購買4塊電子白板和5臺(tái)筆記本電腦共需80000元.
(1)求購買一塊電子白板和一臺(tái)筆記本電腦各需多少元?
(2)根據(jù)該校實(shí)際情況需購買電子白板和筆記本電腦的總數(shù)為396臺(tái),要求購買的總費(fèi)用不超過2700000元,并購買筆記本電腦的臺(tái)數(shù)不超過購買電子白板數(shù)量的3倍,該校有哪幾種購買方案?
【答案】(1)15000,4000;(2)三種,見解析.
【解析】
(1)設(shè)購買1塊電子白板需要x元,一臺(tái)筆記本電腦需要y元,由題意得等量關(guān)系:①買1塊電子白板的錢=買3臺(tái)筆記本電腦的錢+3000元,②購買4塊電子白板的費(fèi)用+5臺(tái)筆記本電腦的費(fèi)用=80000元,由等量關(guān)系可得方程組,解方程組可得答案;
(2)設(shè)購買電子白板a塊,則購買筆記本電腦(396-a)臺(tái),由題意得不等關(guān)系:①購買筆記本電腦的臺(tái)數(shù)≤購買電子白板數(shù)量的3倍;②電子白板和筆記本電腦總費(fèi)用≤2700000元,根據(jù)不等關(guān)系可得不等式組,解不等式組,求出整數(shù)解即可;
解:(1)設(shè)一塊電子白板x元,一臺(tái)筆記本電腦y元.
3y+3000=x ①
4x+5y=80000 ②
把①代入②中得
4(3y+3000)+5y=80000
12y+12000+5y=80000
17y=68000
y=4000
把y=4000代入①中得
x=15000
答:一塊電子白板15000元,一臺(tái)筆記本電腦4000元.
(2) 設(shè)購買電子白板a塊,則購買筆記本電腦(396-a)臺(tái),由題意得:
解得:,
∵a為正整數(shù),
∴a=99,100,101,則電腦依次買:297臺(tái),296臺(tái),295臺(tái).
因此該校有三種購買方案:
方案一:購買筆記本電腦295臺(tái),則購買電子白板101塊;
方案二:購買筆記本電腦296臺(tái),則購買電子白板100塊;
方案三:購買筆記本電腦297臺(tái),則購買電子白板99塊.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將2×2的正方形網(wǎng)格如圖所示的放置在平面直角坐標(biāo)系中,每個(gè)小正方形的頂點(diǎn)稱為格點(diǎn),每個(gè)小正方形的邊長都是1,正方形ABCD的頂點(diǎn)都在格點(diǎn)上,若直線y=kx(k≠0)與正方形ABCD有公共點(diǎn),則k不可能是( )
A.3
B.2
C.1
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面的推理過程,在括號(hào)內(nèi)填上推理的依據(jù),如圖:
∵∠1+∠2=180°,∠2+∠4=180°(已知)
∴∠1=∠4( )
∴c∥a( )
又∵∠2+∠3=180°(已知 )
∠3=∠6( )
∴∠2+∠6=180°( )
∴a∥b( )
∴c∥b( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在等邊△ABC中,D是邊AC上一點(diǎn),連接BD,將△BCD繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°,得到△BAE,連接ED,若BC=5,BD=4,則以下四個(gè)結(jié)論中: ①△BDE是等邊三角形; ②AE∥BC; ③△ADE的周長是9; ④∠ADE=∠BDC.其中正確的序號(hào)是( 。
A.②③④B.①②④C.①②③D.①③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的直徑為10,弦AB的長為6,M是弦AB上的一動(dòng)點(diǎn),則線段的OM的長的取值范圍是( )
A.3≤OM≤5
B.4≤OM≤5
C.3<OM<5
D.4<OM<5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,∠ABC=45°,點(diǎn)D是BC邊上一動(dòng)點(diǎn)(與點(diǎn)B,C不重合),點(diǎn)E與點(diǎn)D關(guān)于直線AC對(duì)稱,連結(jié)AE,過點(diǎn)B作BF⊥ED的延長線于點(diǎn)F.
(1)依題意補(bǔ)全圖形;
(2)當(dāng)AE=BD時(shí),用等式表示線段DE與BF之間的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,∠1=∠2,∠C=∠D。
求證:∠A=∠F。
證明:∵∠1=∠2(已知),
又∠1=∠DMN(_______________),
∴∠2=∠_________(等量代換),
∴DB∥EC( ),
∴∠DBC+∠C=1800(兩直線平行 , ),
∵∠C=∠D( ),
∴∠DBC+ =1800(等量代換),
∴DF∥AC( ,兩直線平行),
∴∠A=∠F( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,OA=8,OB=6,C點(diǎn)與A點(diǎn)關(guān)于直線OB對(duì)稱,動(dòng)點(diǎn)P、Q分別在線段AC、AB上(點(diǎn)P不與點(diǎn)A.C重合),滿足∠BPQ=∠BAO.
(1)當(dāng)OP=_______時(shí),△APQ≌△CBP,說明理由;
(2)當(dāng)△PQB為等腰三角形時(shí),求OP的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在每個(gè)小正方形邊長為1的方格紙中,△ADC的頂點(diǎn)都在方格紙格點(diǎn)上,將△ABC向左平移1格.再向上平移1格,
(1)在圖中畫出平移后的△A′B′C′;
(2)畫出AB邊上的高CE;
(3)過點(diǎn)A畫BC的平行線;
(4)在圖中,若△BCQ的面積等于△BCA的面積.則圖中滿足條件且異于點(diǎn)A的個(gè)點(diǎn)Q共有_____個(gè).(注:格點(diǎn)指網(wǎng)格線的交點(diǎn))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com