【題目】如圖,BCA=90°,AC=BC,BECF于點E,AFCF于點F,其中0<∠ACF45°.

(1)求證:BEC≌△CEA;

(2)AF=5,EF=8,BE的長.

【答案】(1)見解析(2) 13

【解析】

1)由余角的性質可得∠B=∠ACF,即可證△BEC≌△CFA;
2)由全等三角形的性質可求解.

證明:(1)∵BECF,∠BCA=90°,
∴∠B+∠BCE=90°,∠BCE+∠ACF=90°,
AFCFB=∠ACF,

BECF,AFCF

∴∠BEC=∠AFC=90°

在△BEC和△CFA

∴△BEC≌△CFA;
2)∵△BEC≌△CFA
CE=AF=5,BE=CF
FC=CE+EF=5+8=13
BE=13

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】問題情境:如圖1,,,.求 度數(shù).

小明的思路是:如圖2,過 ,通過平行線性質,可得

問題遷移:

1)如圖3,,點 在射線 上運動,當點 兩點之間運動時,, 、 、 之間有何數(shù)量關系?請說明理由;

2)在(1)的條件下,如果點 、 兩點外側運動時(點 與點 、 三點不重合),請你直接寫出 、 間的數(shù)量關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義:在同一平面內,如果矩形ABCD的四個頂點到⊙M上一點的距離相等,那么稱這個矩形ABCD是⊙M的“伴侶矩形”.如圖,在平面直角坐標系xOy中,直線l:y= x﹣3交x軸于點M,⊙M的半徑為2,矩形ABCD沿直線運動(BD在直線l上),BD=2,AB∥y軸,當矩形ABCD是⊙M的“伴侶矩形”時,點C的坐標為( )

A.( ,﹣
B.( ,﹣
C.( ,﹣ )或( + ,﹣
D.( ,﹣ )或( + ,

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,四邊形中,

1)動點出發(fā),以每秒1個單位的速度沿路線運動到點停止,設運動時間為,的面積為關于的函數(shù)圖象如圖②所示,求的長.

2)如圖③動點從點出發(fā),以每秒2個單位的速度沿路線運動到點停止,同時,動點從點出發(fā),以每秒5個單位的速度沿路線運動到點停止,設運動時間為,當點運動到邊上時,連接,當的面積為8時,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校在藝術節(jié)宣傳活動中,采用了四種宣傳形式:A唱歌,B舞蹈,C朗誦,D器樂.全校的每名學生都選擇了一種宣傳形式參與了活動,小明對同學們選用的宣傳形式,進行了隨機抽樣調查,根據(jù)調查統(tǒng)計結果,繪制了如圖兩種不完整的統(tǒng)計圖表:

選項

方式

百分比

A

唱歌

35%

B

舞蹈

a

C

朗誦

25%

D

器樂

30%

請結合統(tǒng)計圖表,回答下列問題:

(1)本次調查的學生共人,a= , 并將條形統(tǒng)計圖補充完整 ;
(2)如果該校學生有2000人,請你估計該校喜歡“唱歌”這種宣傳形式的學生約有多少人?
(3)學校采用調查方式讓每班在A、B、C、D四種宣傳形式中,隨機抽取兩種進行展示,請用樹狀圖或列表法,求某班抽到的兩種形式有一種是“唱歌”的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)思考探究:如圖,△ABC的內角∠ABC的平分線與外角∠ACD的平分線相交于P點,已知∠ABC70°,∠ACD100°.求∠A和∠P的度數(shù).

2)類比探究:如圖,△ABC的內角∠ABC的平分線與外角∠ACD的平分線相交于P點,已知∠P.求∠A的度數(shù)(用含n的式子表示).

3)拓展遷移:已知,在四邊形ABCD中,四邊形ABCD的內角∠ABC與外角∠DCE的平分線所在直線相交于點P,∠P=n°,請畫出圖形;并探究出∠A+D的度數(shù)(用含n的式子表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,P是正方形ABCD的對角線BD上一點,PEBC于點E,PFCD于點F,連接EF,給出下列五個結論:AP=EF;②APEF;③△APD一定是等腰三角形;④∠PFE=BAP;⑤PD=EC,其中正確結論的序號是______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在梯形ABCD中,,,EBC的中點,點P以每秒1個單位長度的速度從點A出發(fā),沿AD向點D運動;點Q同時以每秒2個單位長度的速度從點C出發(fā),沿CB向點B運動當點P停止運動時,點Q也隨之停止運動當運動時間為______秒時,以點P、QE、D為頂點的四邊形是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,E、F、G、H依次是各邊中點,O是四邊形內一點,若S四邊形AEOH=3,S四邊形BFOE=4,S四邊形CGOF=5,則S四邊形DHOG=

查看答案和解析>>

同步練習冊答案