【題目】如圖,鈍角中,,,是邊上一點(diǎn),以為圓心,為半徑作,交邊于點(diǎn),交邊于點(diǎn),過(guò)作的切線(xiàn)交邊于點(diǎn).
(1)求證.
(2)連結(jié),若且,求的半徑長(zhǎng).
【答案】(1)見(jiàn)解析;(2)的半徑長(zhǎng)為.
【解析】
(1)連接OE,如圖,先證明OE∥AC,再利用切線(xiàn)的性質(zhì)得OE⊥EF,從而得到EF⊥AC;
(2)連接DE,如圖,設(shè)⊙O的半徑長(zhǎng)為r,利用圓周角定理得到∠BED=90°,則DE=BD=r,BE=r,再證明∠EDF=90°,∠DFE=60°,接著用r表示出DF=r,EF=r,CE=r,從而得到r+r=2 ,然后解方程即可.
解:(1)證明:連接,如圖,
∵,∴,
∵,,∴,∴,
∵為切線(xiàn),∴,∴;
(2)連接,如圖,設(shè)的半徑長(zhǎng)為,
∵為直徑,∴,
在中,∵,∴,,
∵,∴,
∵,∴,∴,
在中,,∴,
在中,,
而,∴,解得,
即的半徑長(zhǎng)為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在線(xiàn)教育使學(xué)生足不出戶(hù)也能連接全球優(yōu)秀的教育資源. 下面的統(tǒng)計(jì)圖反映了我國(guó)在線(xiàn)教育用戶(hù)規(guī)模的變化情況.
(以上數(shù)據(jù)摘自《2017年中國(guó)在線(xiàn)少兒英語(yǔ)教育白皮書(shū)》)
根據(jù)統(tǒng)計(jì)圖提供的信息,下列推斷一定不合理的是
A. 2015年12月至2017年6月,我國(guó)在線(xiàn)教育用戶(hù)規(guī)模逐漸上升
B. 2015年12月至2017年6月,我國(guó)手機(jī)在線(xiàn)教育課程用戶(hù)規(guī)模占在線(xiàn)教育用戶(hù)規(guī)模的比例持續(xù)上升
C. 2015年12月至2017年6月,我國(guó)手機(jī)在線(xiàn)教育課程用戶(hù)規(guī)模的平均值超過(guò)7000萬(wàn)
D. 2017年6月,我國(guó)手機(jī)在線(xiàn)教育課程用戶(hù)規(guī)模超過(guò)在線(xiàn)教育用戶(hù)規(guī)模的70%
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形ABCD中,兩對(duì)角線(xiàn)AC、BD交于點(diǎn)O,AC=8,BD=6,當(dāng)△OPD是以PD為底的等腰三角形時(shí),CP的長(zhǎng)為( 。
A. 2B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面是小立設(shè)計(jì)的“過(guò)直線(xiàn)外一點(diǎn)作這條直線(xiàn)的平行線(xiàn)”的尺規(guī)作圖過(guò)程.
已知:如圖1,直線(xiàn)l及直線(xiàn)l外一點(diǎn)A.
求作:直線(xiàn)AD,使得.
作法:如圖2,
①在直線(xiàn)l上任取一點(diǎn)B,連接AB;
②以點(diǎn)B為圓心,AB長(zhǎng)為半徑畫(huà)弧,交直線(xiàn)l于點(diǎn)C;
③分別以點(diǎn)A,C為圓心,AB長(zhǎng)為半徑畫(huà)弧,兩弧交于點(diǎn)D(不與點(diǎn)B重合);
④作直線(xiàn)AD.
所以直線(xiàn)AD就是所求作的直線(xiàn).
根據(jù)小立設(shè)計(jì)的尺規(guī)作圖過(guò)程,
(1).使用直尺和圓規(guī),補(bǔ)全圖形;(保留作圖痕跡)
(2)2.完成下面的證明.(說(shuō)明:括號(hào)里填推理的依據(jù))
證明:連接CD.
∵,
∴四邊形ABCD是___________(_________________).
∴(_____________).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有兩個(gè)一元二次方程,,其中,下列四個(gè)結(jié)論中,錯(cuò)誤的是( )
A. 如果方程有兩個(gè)不相等的實(shí)數(shù)根,那么方程也有兩個(gè)不相等的實(shí)數(shù)根
B. 時(shí),方程和方程有一個(gè)相同的根,那么這個(gè)根必是
C. 如果是方程的一個(gè)根,那么是方程的一個(gè)根
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知二次函數(shù)的圖象與軸交于、兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),與軸交于點(diǎn),且,頂點(diǎn)為.
(1)求二次函數(shù)的解析式;
(2)點(diǎn)為線(xiàn)段上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)作軸的垂線(xiàn),垂足為,若,四邊形的面積為,求關(guān)于的函數(shù)解析式,并寫(xiě)出的取值范圍;
(3)探索:線(xiàn)段上是否存在點(diǎn),使為等腰三角形?如果存在,求出點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說(shuō)呀理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,四邊形ABOC是正方形,點(diǎn)A的坐標(biāo)為(1,1),弧AA1是以點(diǎn)B為圓心,BA為半徑的圓;弧A1A2是以點(diǎn)O為圓心,OA1為半徑的圓弧;弧A2A3是以點(diǎn)C為圓心,CA2為半徑的圓弧;弧A3A4是以點(diǎn)A為圓心,AA3為半徑的圓弧,繼續(xù)以點(diǎn)B,O,C,A為圓心按上述作法得到的曲線(xiàn)AA1A2A3A4A5…稱(chēng)為正方形的“漸開(kāi)線(xiàn)”,則點(diǎn) A4的坐標(biāo)是____,那么 A4n+1的坐標(biāo)為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,經(jīng)過(guò)點(diǎn)B(﹣2,0)的直線(xiàn)y=kx+b與直線(xiàn)y=4x+2相交于點(diǎn)A(﹣1,﹣2),4x+2<kx+b<0的解集為( 。
A.x<﹣2B.﹣2<x<﹣1C.x<﹣1D.x>﹣1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某農(nóng)戶(hù)承包荒山種植某產(chǎn)品種蜜柚已知該蜜柚的成本價(jià)為8元千克,投入市場(chǎng)銷(xiāo)售時(shí),調(diào)查市場(chǎng)行情,發(fā)現(xiàn)該蜜柚銷(xiāo)售不會(huì)虧本,且每天銷(xiāo)量千克與銷(xiāo)售單價(jià)元千克之間的函數(shù)關(guān)系如圖所示.
求y與x的函數(shù)關(guān)系式,并寫(xiě)出x的取值范圍;
當(dāng)該品種蜜柚定價(jià)為多少時(shí),每天銷(xiāo)售獲得的利潤(rùn)最大?最大利潤(rùn)是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com