【題目】如圖,在⊙O中,半徑OA與弦BD垂直,點(diǎn)C在⊙O上,∠AOB=80°
(1) 若點(diǎn)C在優(yōu)弧BD上,求∠ACD的大小
(2) 若點(diǎn)C在劣弧BD上,直接寫出∠ACD的大小
【答案】(1)∠ACD=40°;(2)∠ACD=40°或140°.
【解析】
(1)由AO⊥BD,根據(jù)垂徑定理可得,再利用等弧對等角,以及圓周角定理即可求出結(jié)果;
(2)如圖所示,點(diǎn)C有兩個(gè)位置,分別利用圓周角定理的推論和圓周角定理求出即可.
解:(1)∵AO⊥BD,
∴,
∴∠AOB=2∠ACD,
∵∠AOB=80°,
∴∠ACD=40°;
(2)如圖,①當(dāng)點(diǎn)C1在上時(shí),∠AC1D=∠ACD=40°;
②當(dāng)點(diǎn)C2在上時(shí),∵∠AC2D+∠ACD=180°,∴∠AC2D=140°.
綜上所述,∠ACD=40°或140°.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題提出
(1)如圖①,在△ABC中,AB=AC=10,BC=12,點(diǎn)O是△ABC的外接圓的圓心,則OB的長為
問題探究
(2)如圖②,已知矩形ABCD,AB=4,AD=6,點(diǎn)E為AD的中點(diǎn),以BC為直徑作半圓O,點(diǎn)P為半圓O上一動(dòng)點(diǎn),求E、P之間的最大距離;
問題解決
(3)某地有一塊如圖③所示的果園,果園是由四邊形ABCD和弦CB與其所對的劣弧場地組成的,果園主人現(xiàn)要從入口D到上的一點(diǎn)P修建一條筆直的小路DP.已知AD∥BC,∠ADB=45°,BD=120米,BC=160米,過弦BC的中點(diǎn)E作EF⊥BC交于點(diǎn)F,又測得EF=40米.修建小路平均每米需要40元(小路寬度不計(jì)),不考慮其他因素,請你根據(jù)以上信息,幫助果園主人計(jì)算修建這條小路最多要花費(fèi)多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】春節(jié)前夕,某批發(fā)部從廠家購進(jìn)A、B兩種禮盒,已知購進(jìn)2個(gè)A禮盒和3個(gè)B禮盒共花520元;購進(jìn)3個(gè)A禮盒和2個(gè)B禮盒共花費(fèi)480元.
(1)求A、B兩種禮盒的單價(jià)分別是多少元?
(2)該批發(fā)部經(jīng)理購進(jìn)這兩種禮盒恰好用去4800元購進(jìn)A種禮盒最多18個(gè),B種禮盒的數(shù)量不超過A種禮盒數(shù)量的2倍,共有幾種進(jìn)貨方案?
(3)已知銷售一個(gè)A種禮盒可獲利10元,銷售一個(gè)B種禮盒可獲利18元,該店主決定每售出一個(gè)B種禮盒,為愛心公益基金捐款m元,每個(gè)A種禮盒的利潤不變,在(2)的條件下,要使A、B兩種禮盒全部售出后所有方案獲利均相同,m的值應(yīng)是多少?此時(shí)這個(gè)批發(fā)部獲利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市某童裝專賣店在銷售中發(fā)現(xiàn),一款童裝每件進(jìn)價(jià)為40元,若銷售價(jià)為60元,每天可售出20件,為迎接“雙十一”,專賣店決定采取適當(dāng)?shù)慕祪r(jià)措施,以擴(kuò)大銷售量,經(jīng)市場調(diào)查發(fā)現(xiàn),如果每件童裝降價(jià)1元,那么平均可多售出2件設(shè)每件童裝降價(jià)x元時(shí),平均每天可盈利y元.
寫出y與x的函數(shù)關(guān)系式;
當(dāng)該專賣店每件童裝降價(jià)多少元時(shí),平均每天盈利400元?
該專賣店要想平均每天盈利600元,可能嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為2,P為CD的中點(diǎn),連結(jié)AP,過點(diǎn)B作BE⊥AP于點(diǎn)E,延長CE交AD于點(diǎn)F,過點(diǎn)C作CH⊥BE于點(diǎn)G,交AB于點(diǎn)H,連接HF.下列結(jié)論正確的是( 。
A. CE= B. EF= C. cos∠CEP= D. HF2=EFCF
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=8,BC=4.點(diǎn)G,E分別在邊AB,CD上,點(diǎn)F,H在對角線AC上.若四邊形EFGH是菱形,則AG的長是( )
A.B.5C.D.6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,若O為BC邊的中點(diǎn),則必有:AB2+AC2=2AO2+2BO2成立.依據(jù)以上結(jié)論,解決如下問題:如圖,在矩形DEFG中,已知DE=4,EF=3,點(diǎn)P在以DE為直徑的半圓上運(yùn)動(dòng),則PF2+PG2的最小值為( )
A. B. C. 34 D. 10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形中,,以B為頂點(diǎn),作交延長線于點(diǎn)E.
(1)求證:四邊形是矩形;
(2)若,,點(diǎn)P從點(diǎn)E出發(fā),沿方向,以每秒1個(gè)單位的速度向終點(diǎn)B運(yùn)動(dòng);點(diǎn)Q從點(diǎn)D出發(fā),沿方向,以每秒2個(gè)單位的速度向終點(diǎn)A運(yùn)動(dòng),兩點(diǎn)同時(shí)出發(fā),其中一點(diǎn)到達(dá)終點(diǎn)后,另一點(diǎn)隨之停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為.
①若是等腰三角形,求t的值;
②若,直接寫出t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某小學(xué)三年級到六年級的全體學(xué)生參加“禮儀”知識測試,現(xiàn)將有關(guān)數(shù)據(jù)整理后繪制成如下“年級人數(shù)統(tǒng)計(jì)圖”和尚未全部完成的“成績情況統(tǒng)計(jì)表”根據(jù)圖表中提供的信息,回答下列問題:
成績 | 100分 | 90分 | 80分 | 70分 | 60分 |
人數(shù) | 21 | 40 | 5 | ||
頻率 |
|
(1)測試學(xué)生中,成績?yōu)?/span>80分的學(xué)生人數(shù)有___名;眾數(shù)是___分;中位數(shù)是___分;
若該小學(xué)三年級到六年級共有1800名學(xué)生,則可估計(jì)出成績?yōu)?/span>70分的學(xué)生人數(shù)約有多少名?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com