【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,有下列5個結(jié)論:①4a+2b+c>0;②abc<0;③b<a﹣c;④3b>2c;⑤a+b<m(am+b),(m≠1的實數(shù));其中正確結(jié)論的個數(shù)為( 。
A.2個B.3個C.4個D.5個
【答案】B
【解析】
由拋物線的開口方向判斷a的符號,由拋物線與y軸的交點判斷c的符號,然后根據(jù)對稱軸及拋物線與x軸交點情況進行推理,進而對所得結(jié)論進行判斷.
解:①由對稱知,當x=2時,函數(shù)值大于0,即y=4a+2b+c>0,故①正確;
②由圖象可知:a<0,b>0,c>0,abc<0,故②正確;
③當x=1時,y=a+b+c>0,即b>﹣a﹣c,當x=﹣1時,y=a﹣b+c<0,即b>a+c,故③錯誤;
④當x=3時函數(shù)值小于0,y=9a+3b+c<0,且x=﹣=1,
即a=﹣,代入得9(﹣)+3b+c<0,得2c<3b,故④正確;
⑤當x=1時,y的值最大.此時,y=a+b+c,
而當x=m時,y=am2+bm+c,
所以a+b+c>am2+bm+c,
故a+b>am2+bm,即a+b>m(am+b),故⑤錯誤.
綜上所述,①②④正確.
故選:B.
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,點A是半圓上的一個三等分點,B是劣弧的中點,點P是直徑MN上的一個動點,⊙O的半徑為1,則AP+PB的最小值_______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某市為創(chuàng)建全國文明城市,開展“美化綠化城市”活動,計劃經(jīng)過若干年使城區(qū)綠化總面積新增360萬平方米.自2013年初開始實施后,實際每年綠化面積是原計劃的1.6倍,這樣可提前4年完成任務.
(1)問實際每年綠化面積多少萬平方米?
(2)為加大創(chuàng)城力度,市政府決定從2016年起加快綠化速度,要求不超過2年完成,那么實際平均每年綠化面積至少還要增加多少萬平方米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】今年5月,某大型商業(yè)集團隨機抽取所屬的m家商業(yè)連鎖店進行評估,將各連鎖店按照評估成績分成了A、B、C、D四個等級,繪制了如圖尚不完整的統(tǒng)計圖表.
評估成績n(分) | 評定等級 | 頻數(shù) |
90≤n≤100 | A | 2 |
80≤n<90 | B | |
70≤n<80 | C | 15 |
n<70 | D | 6 |
根據(jù)以上信息解答下列問題:
(1)求m的值;
(2)在扇形統(tǒng)計圖中,求B等級所在扇形的圓心角的大;(結(jié)果用度、分、秒表示)
(3)從評估成績不少于80分的連鎖店中任選2家介紹營銷經(jīng)驗,求其中至少有一家是A等級的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某游樂場一轉(zhuǎn)角滑梯如圖所示,滑梯立柱AB、CD均垂直于地面,點E在線段BD上,在C點測得點A的仰角為30°,點E的俯角也為30°,測得B、E間距離為10米,立柱AB高30米.求立柱CD的高(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我市某中學學生會在開展“厲行勤儉節(jié)約,反對鋪張浪費”的主題教育活動中,在全校范圍內(nèi)隨機抽取了若干名學生就某日晚飯浪費飯菜情況進行調(diào)查,調(diào)查內(nèi)容分為四種:A.飯和菜全部吃完;B.有剩飯但菜吃完;C.飯吃完但菜有剩;D.飯和菜都有剩.學生會根據(jù)統(tǒng)計結(jié)果,繪制了如下統(tǒng)計表:根據(jù)所給信息,回答下列問題:
選項 | 頻數(shù) | 頻率 |
A | 36 | m |
B | n | 0.2 |
C | 6 | 0.1 |
D | 6 | 0.1 |
(1)統(tǒng)計表中:m=______;n=______.
(2)該中學有1800名學生晚飯在校就餐,根據(jù)調(diào)查結(jié)果,估計當天晚飯有多少人能夠把飯和菜全部吃完?
(3)為了對同學們浪費的行為進行糾正,校學生會從飯和菜都有剩的甲、乙、丙、丁四名同學中任取2位同學進行批評教育,請用列表法或樹狀圖法求恰好抽到甲和丁的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】居民區(qū)內(nèi)的“廣場舞”引起媒體關注,遼寧都市頻道為此進行過專訪報道.小平想了解本小區(qū)居民對“廣場舞”的看法,進行了一次抽樣調(diào)查,把居民對“廣場舞”的看法分為四個層次:A.非常贊同;B.贊同但要有時間限制;C.無所謂;D.不贊同.并將調(diào)查結(jié)果繪制了圖1和圖2兩幅不完整的統(tǒng)計圖.
請你根據(jù)圖中提供的信息解答下列問題:
(1)求本次被抽查的居民有多少人?
(2)將圖1和圖2補充完整;
(3)求圖2中“C”層次所在扇形的圓心角的度數(shù);
(4)估計該小區(qū)4000名居民中對“廣場舞”的看法表示贊同(包括A層次和B層次)的大約有多少人.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知在平面直角坐標系xOy中,拋物線經(jīng)過原點,且與x軸相交于點A,點A的橫坐標為6,拋物線頂點為點B.
(1)求這條拋物線的表達式和頂點B的坐標;
(2)過點O作OP∥AB,在直線OP上點取一點Q,使得∠QAB=∠OBA,求點Q的坐標;
(3)將該拋物線向左平移m(m>0)個單位,所得新拋物線與y軸負半軸相交于點C且頂點仍然在第四象限,此時點A移動到點D的位置,CB:DB=3:4,求m的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】y=﹣2x+4直線交x軸于點A,交y軸于點B,拋物線y=﹣(x﹣m)(x﹣6)(m>0)經(jīng)過點A,交x軸于另一點C,如圖所示.
(1)求拋物線的解析式.
(2)設拋物線的頂點為D,連接BD,AD,CD,動點P在BD上以每秒2個單位長度的速度由點B向點D運動,同時動點Q在線段CA上以每秒3個單位長度的速度由點C向點A運動,當其中一個點到達終點停止運動時,另一個點也隨之停止運動,設運動時間為t秒.PQ交線段AD于點E.
①當∠DPE=∠CAD時,求t的值;
②過點E作EM⊥BD,垂足為點M,過點P作PN⊥BD交線段AB或AD于點N,當PN=EM時,求t的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com