【題目】已知:如圖,四邊形ABCD是菱形,E是BD延長線上一點,F(xiàn)是DB延長線上一點,且DE=BF.請你以F為一個端點,和圖中已標明字母的某一點連成一條新的線段,猜想并證明它和圖中已有的某一條線段相等(只須證明一組線段相等即可).

(1)連接 ;

(2)猜想: = ;

(3)證明:

【答案】(1)連結AF

(2)AF=AE

(3)證明:

四邊形ABCD是菱形

AB=AD

∴∠ADB=ABD

∵∠ABD+ABF=180°

ADB+ADE=180°

∴∠ABF=ADE

BF = DE

∴△ABF≌△ADE(SAS)

AF=AE

【解析】

試題分析:根據(jù)觀察圖形,應該是連接AF或者CF

(1)連結AF(或連結CF)

(2)猜想AF=AE(連結CF的,則猜想CF=AE)

(3)證明:(以AF=AE為例,其他證法參照得分)

四邊形ABCD是菱形

AB=AD

∴∠ADB=ABD

∵∠ABD+ABF=180°

ADB+ADE=180°

∴∠ABF=ADE

BF = DE

∴△ABF≌△ADE(SAS)

AF=AE

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某公司研發(fā)1000件新產(chǎn)品,需要精加工后才能投放市場.現(xiàn)在甲、乙兩個工廠加工這批產(chǎn)品,已知甲工廠單獨加工完成這批產(chǎn)品比乙工廠單獨加工完成這批產(chǎn)品多用10天,而乙工廠每天加工的件數(shù)是甲工廠每天加工件數(shù)的1.25倍,公司需付甲工廠加工費用每天100元,乙工廠加工費用每天125元.

(1)甲、乙兩個工廠每天各能加工多少件新產(chǎn)品?

(2)兩個工廠同時合作完成這批產(chǎn)品,共付加工費多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△OAB中,∠OAB=90°,OA=AB=6,將△OAB繞點O逆時針方向旋轉90°
得到△OA1B1

(1)線段A1B1的長是 , ∠AOA1的度數(shù)是;
(2)連結AA1 , 求證:四邊形OAA1B1是平行四邊形;
(3)求四邊形OAA1B1的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知A,B兩點在數(shù)軸上,點A表示的數(shù)為-10,OB=3OA,點M以每秒3個單位長度的速度從點A向右運動.點N以每秒2個單位長度的速度從點O向右運動(點M、點N同時出發(fā))

(1)數(shù)軸上點B對應的數(shù)是______.

(2)經(jīng)過幾秒,點M、點N分別到原點O的距離相等?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在同一平面內,△ABC和△ABD如圖①放置,其中AB=BD.
小明做了如下操作:
將△ABC繞著邊AC的中點旋轉180°得到△CEA,將△ABD繞著邊AD的中點旋轉180°得到△DFA,如圖②,請完成下列問題:

(1)試猜想四邊形ABDF是什么特殊四邊形,并說明理由;
(2)連接EF,CD,如圖③,求證:四邊形CDEF是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是按規(guī)律擺放在墻角的一些小正方體,從上往下分別記為第一層,第二層,第三層,…,第n層.

(1)第三層有________個小正方體;

(2)從第四層至第六層(含第四層和第六層)共有________個小正方體;

(3)第n層有________個小正方體;

(4)若每個小正方體邊長為a分米,共擺放了n層,則要將擺放的小正方體能看到的表面部分涂上防銹漆,則防銹漆的總面積為________平方分米.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】觀察下列等式:

3﹣=3×;

(﹣)﹣6=(﹣)×6;

(﹣0.5)﹣(﹣1)=(﹣0.5)×(﹣1)

根據(jù)上面這些等式反映的規(guī)律,解答下列問題:

(1)上面等式反映的規(guī)律用文字語言可以描述如下:存在兩個有理數(shù),使得這兩個有理數(shù)的差等于

   

(2)若滿足上述規(guī)律的兩個有理數(shù)中有一個數(shù)是,求另一個有理數(shù);

(3)若這兩個有理數(shù)用字母a、b表示,則上面等式反映的規(guī)律用字母表示為   

(4)(3)中的關系式中,字母a、b是否需要滿足一定的條件?若需要,直接寫出字母a、b應滿足的條件;若不需要,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,圓O的直徑為10 cm,兩條直徑ABCD相交成90°角,∠AOE=50°,OF是∠BOE的平分線.

(1)求圓心角∠COF的度數(shù);

(2)求扇形COF的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了豐富少年兒童的業(yè)余生活,某社區(qū)要在如圖所示AB所在的直線建一圖書室,本社區(qū)有兩所學校所在的位置在點C和點D處,CAABADBABB,已知AB=25km,CA=15km,DB=10km,試問:圖書室E應該建在距點A多少km處,才能使它到兩所學校的距離相等?

查看答案和解析>>

同步練習冊答案