【題目】如圖,有一段防洪大堤,其橫斷面為梯形,,斜坡的坡度,斜坡的坡度,大堤頂寬為,為了增加抗洪能力,現將大堤加高,加高部分的橫斷面為梯形,,點、分別在,的延長線上,當新大堤頂寬為時,大堤加高________米.
【答案】1.1
【解析】
分別過E、F作DC的垂線,設垂足為G、H;可設大壩加高了xm,在Rt△DEG和Rt△FHC中,分別用坡面的鉛直高x和坡比表示出各自的水平寬,即DG、CH的長,進而可表示出DC的長,已知了DC長6m,由此可列出關于x的方程,即可求出大堤加高的高度.
作EG⊥DC,FH⊥DC,G、H分別為垂足,
∵EF∥DC,
∴∠EGH=∠FHG=∠EFH=90°,
∴四邊形EFHG是矩形;
∴GH=EF=3.8,
設大堤加高xm,
則EG=FH=xm,
∵i1=,i2=,
∴DG=1.2xm,HC=0.8xm,
∵DG+GH+HC=CD=6m,
∴1.2x+3.8+0.8x=6,
解得:x=1.1.
∴大堤加高了1.1m.
故答案為:1.1.
科目:初中數學 來源: 題型:
【題目】如圖①,在△ABC中,∠BAC=90°,AB=AC,直線經過點A,且BD⊥l于的D,CE⊥l于的E.
(1)求證:BD+CE=DE;
(2)當變換到如圖②所示的位置時,試探究BD、CE、DE的數量關系,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線l1對應的函數表達式為y=2x-2,直線l1與x軸交于點D.直線l2:y=kx+b與x軸交于點A,且經過點B,直線l1,l2交于點C(m,2).
(1)求點D,點C的坐標;
(2)求直線l2對應的函數表達式;
(3)求△ADC的面積;
(4)利用函數圖象寫出關于x,y的二元一次方程組的解.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在Rt△ABC中,∠A=90°,AB=AC,點D,E分別在邊AB,AC上,AD=AE,連接DC,點M,P,N分別為DE,DC,BC的中點.
(1)觀察猜想
圖1中,線段PM與PN的數量關系是 ,位置關系是 ;
(2)探究證明
把△ADE繞點A逆時針方向旋轉到圖2的位置,連接MN,BD,CE,判斷△PMN的形狀,并說明理由;
(3)拓展延伸
把△ADE繞點A在平面內自由旋轉,若AD=4,AB=10,請直接寫出△PMN面積的最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一個不透明的盒子里裝有30個除顏色外其它均相同的球,其中紅球有m個,白球有3m個,其它均為黃球.現小李從盒子里隨機摸出一個球,若是紅球,則小李獲勝;小李把摸出的球放回盒子里搖勻,由小馬隨機摸出一個球,若為黃球,則小馬獲勝.
(1)當m=4時,求小李摸到紅球的概率是多少?
(2)當m為何值時,游戲對雙方是公平的?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀下列一段話,并解決后面的問題 .觀察下面一例數:
1,2,4,8,……
我們發(fā)現,這一列數從第2項起,每一項與它前一項的比都等于2 .
一般地,如果一列數從第2項起,每一項與它前一項的比都等于同一個常數,這一列數就叫做等比數列,這個常數叫做等比數列的公比 .
(1)等比數列5,-15,45,……的第4項是 ;
(2)如果一列數,,,,……是等比數列,且公比為q,那么根據上述的規(guī)定,有
,,,……
所以,
,
,
……
.(用與q的代數式表示)
(3)一個等比數列的第2項是10,第3項是20,求它的第1項與第4項 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商家銷售一種成本為每件元的商品.據市場調查分析,如果按每件元銷售,一周能售出件;若銷售單價每漲元,每周銷售量就減少件.設銷售單價為元,一周的銷售量為件.
求與之間的函數表達式,并寫出自變量的取值范圍;
設一周的銷售利潤為元,求關于的函數表達式,并求出商家銷售該商品的最大利潤;
若該商家每周投入此商品的成本不超過元,問銷售單價定位多少時,銷售該商品一周的利潤能達到元.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】李老師為了了解學生暑期在家的閱讀情況,隨機調查了20名學生某一天的閱讀小時數,具體情況統(tǒng)計如下:
閱讀時間 (小時) | 2 | 2.5 | 3 | 3.5 | 4 |
學生人數(名) | 1 | 2 | 8 | 6 | 3 |
則關于這20名學生閱讀小時數的說法正確的是( 。
A. 眾數是8 B. 中位數是3 C. 平均數是3 D. 方差是0.34
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線y=x+2與拋物線y=ax2+bx+6(a≠0)相交于點A(, ),B(4,m),點P是線段AB上異于A,B的動點,過點P作PC⊥x軸于點D,交拋物線于點C.
(1)求拋物線的解析式;
(2)是否存在這樣的P點,使線段PC的長有最大值?若存在,求出這個最大值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com